Aggressive Mature Natural Killer Cell Neoplasms: From EBV-Infection to Disease Etiopathogeny

Margarida Lima*
Laboratory of Cytometry, Department of Hematology, Hospital de Santo António (HSA), Centro Hospitalar do Porto (CHP), Multidisciplinary Unit for Biomedical Investigation (UMIB/ICBAS/UP), Porto, Portugal

Abstract

Mature Natural Killer (NK) cell neoplasms are rare tumors with higher prevalence in Asia, Central and South America, which are related to Epstein Barr Virus (EBV) infection. Nature killer /T cell lymphoma, nasal type, presents as a localized or generalized destructive tumor, affecting the nose, the upper aero digestive tract or any organ or tissue, whereas aggressive NK-cell leukemia manifests as a systemic disease that preferentially affects the bone marrow, the spleen and the liver, and rapidly evolve to multiorgan failure resulting in death. Both NK-cell neoplasms arise as a consequence of the inability of the immune system to control EBV infection and of the transforming potential of multiple EBV gene products. Chronic active EBV infection and EBV-related lymphoproliferative disorders of NK-cells are predisposing conditions. The tumor NK-cells do express an EBV infection type II latency pattern, specific EBV-encoded latent membrane proteins and early region EBV RNAs being detected on lymphoma cells. The EBV encoded proteins and non-coding EBV RNAs and micro-RNAs expressed on the infected cells are involved in immune deregulation and play a crucial role in cell transformation and oncogenesis. This review addresses the mechanisms used by EBV to infect the cells and to evade the immune-surveillance as well as to induce cell survival and transformation, and characterizes the spectrum of the clinical manifestations associated with chronic EBV-infection and related T-and NK-lymphoproliferative disorders. Improving the knowledge in this subject will help to develop new therapeutic approaches for chronic EBV-infection and even prevention strategies for the aggressive NK-cell malignancies.

Keywords: NK-cell neoplasms; NK/T-cell lymphoma; Nasal-type; Aggressive NK-cell leukemia; Epstein Barr Virus; Chronic active EBV-infection; Viral-induced cell transformation

List of Abbreviations

AIDS: Acquired Immunodeficiency Syndrome; AIP4: Atrophin-1-Interacting Protein 4 (Nedd4-Like E3 Ubiquitin Ligase); ANKCL: Aggressive NK-Cell Leukemia; BCL2: B-Cell CLL/Lymphoma Protein Type 2; BCL6: B-Cell CLL/Lymphoma Protein Type 6; BCR: B-Cell Receptor; BM: Bone Marrow; BRAM: BMP Receptor Associated Molecule; CAEBV: Chronic Active EBV Disease; CBFI: Centromere Binding Factor 1; CLPD-NK: Chronic Lymphoproliferative Disorders of NK-Cells; CNKCL: Chronic NK-Cell Lymphocytosis; CTL: Cytotoxic T-Lymphocytes; Dcr3: Decay Receptor Type 3; DNA-PK: DNA-Protein Kinases Catalytic Subunit; EBER: Early Region Epstein Barr Virus RNA; EBNA: Epstein Barr Virus Early Nuclear Antigen; EBNA-LP: Epstein Barr Virus Nuclear Antigens Leader Protein; EBV: Epstein Barr Virus; EBV-AN: Epstein Barr Virus Encoded Alkaline Nuclease; EBV-EA: Epstein Barr Virus Early Antigens; EBV-HLH: Epstein Barr Virus-Associated Hemophagocytic Lymphohistiocytosis; EBV-LPD: Epstein Barr Virus-Associated Lymphoproliferative Disorders; EBV-MA: Epstein Barr Virus Early Membrane Antigen; EBV-VCA: Epstein Barr Virus Early Membrane Protein; EBER: Early Region Epstein Barr Virus RNAs; Fas: Fas Ligand; FLIP: FLICE Inhibitor Protein; HAUSP: Herpes Virus-Associated Ubiquitin-Specific Protease; HAX-1: HCLS1-Associated Protein X-1; HHV: Human Herpes Viruses; HLA: Human Leukocyte Antigens; HLH: EBV-Associated Hemophagocytic Lymphohistiocytosis; HMB: Hypersensitivity To Mosquito Bites; HS: Hemophagocytic Syndrome; HV: Hydros Vacciniforme; ICAM-1: Intercellular Adhesion Molecule -1; IFN: Interferon; IFN-Gamma: Interferon-Gamma; IGF-1: Insulin Growth Factor Type 1; IL: Interleukin; IL-10: Interleukin 10; IL-1A: Interleukin 1 Alpha; IL-2: Interleukin 2; IL-6: Interleukin 6; IL-9: Interleukin 9; IRF-3: Interferon Regulatory Transcription Factor 3; ITAC: IFN-Inducible T-Cell Attracting Chemokine (CXC11); ITAM: Immunoreceptor Tyrosine-Based Activation Motif; JAK: Janus Kinase; JNK: C-Jun N-Terminal Kinases; KLR: C-Type Lectin-Like Receptors; KSHV: Kaposi's Sarcoma Associated Herpes Virus; LANA1: Latency-Associated Nuclear Antigen Type 1 (From KSHV); Lc: Member Of The Src-Family Tyrosine Kinase; LFA: Leukocyte Function Adhesion Molecule; LMP: Epstein Barr Virus-Encoded Latent Membrane Protein; LN: Lymph Nodes; LPD: Lymphoproliferative Disorders; Lyn: Member Of The Src-Family Tyrosine Kinase; MAPK: Mitogen-Activated Protein Kinase; Mi-Rnas: Micro RNAs; NEDD4: Neural Precursor Cell Expressed Developmentally Down-Regulated Protein 4 (E3 Ubiquitin Ligase); NfkB: Nuclear Factor kxB; NK: Natural Killer; NKTC: NK/T Cell Lymphoma; P53: Tumor Protein P53; PCR: Polymerase Chain Reaction; PI3: Phosphoinositide 3-Kinase; PI9: Protease Inhibitors 9 (Also Known As SERPIN9); PK: Protein Kinase B (Also Known As Akt); PKC: Protein Kinase C; PRK: Protein Kinase RNA-Dependent; PUMA: P53 Up-Regulated Modulator Of Apoptosis; RAP: Rapidly Accelerated Fibrosarcoma Kinase; RAG: Recombination Activation Genes; RBP-2N: Recombination Signal Sequence-Binding Protein 2N; RBP-J: Recombining Binding Protein Suppressor Of Hairless; RIG-I: Retinoic-Acid Inducible Gene I; SMBA: Severe Mosquito Bite Allergy; SERPIN9: Serine Protease Inhibitors 9 (Also Known As PI9); Src: Member Of The Src-Family Tyrosine Kinase; Src: Short For “Sarcoma” (Tyrosine Kinase); STAT: Signal Transducers

*Corresponding author: Margarida Lima, Laboratory of Cytometry, Department of Hematology, Hospital de Santo António, Centro Hospitalar do Porto, Rua D. Manuel II, s/n 4099-001 Porto, Portugal, Tel: +351-22-2077500; Fax: +351-22-600480; E-mail: mmc.lima@cidx.pt : margaridalima@chporto.min-saude.pt

Received November 25, 2013; Accepted December 26, 2013; Published December 31, 2013

Copyright: © 2013 Lima M. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
And Activators Of Transcription; Syk; Spleen Tyrosine Kinase; TAP: Transporter Associated With Antigen Processing; TCR: T Cell Receptor; Th/T Helper; Th1: T Helper Type 1; Th2: T Helper Type 2; TLR3: Toll-Like Receptor Type 3; TNF: Tumor Necrosis Factor; TNFR: Tumor Necrosis Factor Receptor; TRADD: Tumor Necrosis Factor Receptor Type 1-Associated DEATH Domain Protein; TRAF: TNF Receptor Associated Factor; USP: Ubiquitin-Specific Protease; VCA: Viral Capside Antigens; VIL-10: Viral Homologue Of Interleukin 10; WHO: World Health Organization; ZAP-70: Zeta-Chain-Associated Protein Kinase 70

Introduction

The Epstein Barr Virus (EBV) is a ubiquitous Human Herpes Virus (HHV) that infects more than 90% of the world’s population, leading to a lifelong infection. Disease occurs when the immune system fails to control the virus and a chronic active infection and/or EBV-related malignancies develop [1,2].

Natural Killer (NK) cell neoplasms are rare diseases categorized by the World Health Organization (WHO) classification of tumors of hematopoietic and lymphoid tissues as extranodal NK/T Cell Lymphomas, Nasal Type (NKTCL), Aggressive NK-Cell Leukemia (ANKCL) and as a provisional entity, Chronic Lymphoproliferative Disorders of NK-Cells (CLPD-NK) [1-23]. They are relatively frequent in Central and South American and Eastern countries, although very uncommon in North America and Europe, and in NKTCL, as in ANKCL, evidence for latent EBV infection in lymphoma cells is a consistent finding [3-19,24-27].

There are two variants of NKTCL, the nasal and extranasal forms. The nasal form manifests as a localized disease affecting the upper aero digestive tract, although dissemination may occur in advanced disease stages [3,12,16,28]. Patients with the extranasal variant frequently have multiple organs and tissues involved at the time of the diagnosis and the disease usually has more adverse clinical features [3,12,16,28]. Bone Marrow (BM) involvement at the diagnosis is uncommon and the hemophagocytic syndrome (HS) is relatively frequent, especially in advanced disease [6,29,30]. Some cases of NKTCL presenting in the lymph nodes (LN) were also described [31-36].

Aggressive NK-cell leukemia is a very rare disease with a fulminant clinical course [4,37-41]. Patients usually present with systemic symptoms, BM infiltration, pancytopenia, hepatosplenomegaly and abnormal liver function, and frequently develop hemophagocytosis, multiorgan failure and disseminated intravascular coagulation [42-48].

Patients with CLPD-NK presents with a persistent increase in circulating NK cells often associated with other conditions such as neutropenia, anemia and vasculitis [23]. The disease is clinically indolent and since it is difficult to determine clonality for NK cells, in most cases it is uncertain whether the condition is reactive or neoplastic [23].

Previous studies revealed a strong association between NK-cell neoplasms and EBV infection throughout the world; for nasal NKTCL, EBV has been nearly always positive, irrespective of the ethnic origin of the patient, whereas for extranasal NKTCL, EBV association is stronger in Oriental patients than in Caucasians [38,49]. EBV proteins and RNAs are detected in lymphoma cells in the vast majority of the NK-cell tumors, using immunohistochemistry and in situ hybridization, respectively and the analysis of the terminal repeat region of the EBV genome shows that the virus is in a clonal epimorphic form, providing an indirect evidence for the clonal nature of the NK-cell proliferation and suggesting that the EBV plays a role in oncogenesis [38,49,50]. In contrast, evidence of EBV infection is rarely found in CLPD-NK, at least in western countries [23].

We review the etiopathogenesis and the predisposing conditions of the aggressive NK cell neoplasms (NKTCL and ANKCL) with emphasis on the virological and immunological features of the EBV infection, including the mechanisms used by EBV to evade the immune surveillance and the transforming potential of specific EBV gene products. Increasing our understanding in this matter promise for the development of more rational treatment of the EBV-infection and could contribute to more effective approach of the EBV-related malignancies.

Etiopathogeny of the NK-Cell Neoplasms

The EBV has two subtypes which differ from each other at the BYRF1, the viral gene that codifies for the EBV nuclear antigen type 2 (EBNA-2) [51]. Type 1 EBV is dominant in the Western hemisphere and Southeast Asia and type 2 EBV predominates in lymphomas of immunocompromised patients whereas both are equally prevalent in Africa [52-54].

Primary EBV infection

Primary EBV infection is usually asymptomatic in childhood; but in adults, it frequently manifests as an acute infectious mononucleosis syndrome [55]. Initial EBV infection probably occurs in the tonsils, where the virus infects the epithelial cells and B-cells, using different mechanisms: to enter epithelial cells, the viral protein BMRF-2 interacts with cellular beta-1 integrins, whereas to enter B-cells, the viral glycoprotein gp350 binds to the C3d complement receptor, CD21 [1]. T-cells and NK-cells can also be secondarily infected, probably by passive acquisition of the CD21 molecule due to membrane fragment exchange during the cytotoxic cell-target cell interactions [56].

EBV life cycle

Once the EBV enters into the host cell, its genome is transported to the nucleus, where linear EBV replication by viral DNA polymerases begins, resulting in the production of new viruses during the lytic phase of the viral life cycle. EBV gene products then activate B-cells resulting in B-cell proliferation. Activated B-cells may continue to undergo lytic replication or, if EBV shuts down some of the genes, latency occurs [57].

Latency is a chronic infection without active viral production, during which EBV persists inside B-cells and possibly also in epithelial cells; at that phase, EBV genomes exist mainly as episomes, which reactivates inside infected B cells, thereby producing new viruses that infect other cells [57].

EBV latency patterns

During the latent phase, where infected cells maintain viral DNA as episomes, there is a variable expression of six EBV nuclear antigens (EBNA)-EBNA-1, EBNA-2, EBNA-3A, EBNA-3B, EBNA-3C, and EBNA-LP-, two EBV latent membrane proteins (LMP)-LMP-1 and LMP-2, with two isoforms, LMP-2A and LMP-2B-, and two EBV-encoded RNAs (EBER)-EBER-1 and EBER-2 [57].

Characterization of gene expression patterns in EBV-infected cell lines allowed for identifying at least three latency programs (type I, II and III) (Table 1). Only EBNA-1 is expressed in the type I program, which is seen in Burkitt’s lymphoma; EBNA-1 and LMP-1/2 are expressed in the type II program, observed in nasopharyngeal carcinoma and Hodgkin’s lymphoma; the type III program, in which...
all of the latency gene products are expressed, is detected during acute infectious mononucleosis, as well as in EBV related post-transplant B-cell LPD and other LPD in immunocompromised individuals [57].

Similarly to that occurring in Hodgkin’s lymphoma, tumor NK-cells are believed to be in latency II, and viral proteins expressed are limited to EBNA-1, LMP-1, and LMP-2; however, LMP-2 has only been demonstrated at the transcriptional level and LMP-1 expression is variable [58].

Anti-EBV immune response

Innate and adaptive immune responses occurring in primary EBV infection involve both cellular and humoral mechanisms [59]. EBV-infected B-cells are first controlled by NK-cells, and later by EBV-specific cytotoxic T lymphocytes (CTL). Among the EBV latency proteins, the EBNA-3 is the most immunogenic for the generation of CTL.

Distinct patterns of antibody response have been identified during primary infection, latent infection of healthy carriers, viral reactivation, and in various EBV-associated diseases, which include IgG and IgM directed against EBV early antigens (EA) -D and -R (encoded by BHRF-1), EBV viral capsid antigens (VCA) and EBNA-1&2.

EBV-specific assays

EBV-specific antibody tests: Anti-EBV antibodies are usually detected by solid-phase enzyme immunoassay (ELISA) and the antibody profile distinguishes acute primary, convalescent, and past infections [60]. Acute primary EBV infection is characterized by the presence of anti-VCA IgM antibodies. During convalescence (from the third week to the third month after the onset of illness) the anti-VCA IgM antibodies decrease, while anti-VCA IgG antibodies rise. Between the third and sixth months, anti-VCA IgM antibodies disappear, and anti-EBNA-1 IgG antibodies become detectable. Both anti-VCA and anti-EBNA-1 IgG antibodies persist for life.

Viral detection and quantification: In situ hybridization to detect EBERs, often complemented with LMP-1 immunostaining, is the gold standard for detecting EBV in tissues; in turn, polymerase chain reaction (PCR) is the technique of choice for detecting and quantifying EBV in body fluids [61,62]. Quantitative PCR assays in whole blood samples or in plasma are routinely used to monitor EBV loads in patients that are at risk for EBV-related diseases, such as post-transplant LPD, as well as for evaluating the effects of anti-EBV therapy [63-65]. EBV-copy numbers are usually 10-100 folds lower in plasma than those in whole-blood.

The management of EBV infection after transplant is usually based on the increase in viral load over time, assuming that when the number of viral copies increases, active viral replication is probably occurring. Viral loads higher than 4000 copies/ml of whole blood or rising levels on the number of viral copies usually prompt a reduction of the immunosuppression and initiation of anti-viral treatment, whose goal is to drive the blood viral load below the level of detection, or at least to less than 1000 copies/ml [66].

Mechanism used by EBV to Evade the Immune System

Although the immune system usually controls infection, it is not able to eliminate the virus, most adults having a chronic latent and asymptomatic EBV infection. The mechanisms by which the viruses escape from immune surveillance and survive are complex and include reduction of the immunogenicity the infected cells, inhibition of the cytotoxic response, and modulation of the apoptotic and cytokine signals, among others [58,67-81].

Reducing the immunogenicity of the infected cells

Active immune evasion mechanisms that reduce the immunogenicity of infected cells are of major importance during both the lytic and the latency phases of the viral cycle.

Down-regulating HLA class I expression: A strategy used by the EBV to evade the immune system is to down-regulate the expression of Human Leukocyte Antigens (HLA) class I antigens, including HLA-A and -B types, and HLA-E, on the surface of the infected cells, thereby impeding presentation of viral antigens and CTL recognition. This effect is at least in part mediated by the virally encoded G protein-coupled receptor BILF1, expressed early in the viral lytic cycle [67].

Blocking antigen processing: The EBV gene BBLF2a, which encodes for an inhibitor of the transporter associated with antigen processing (TAP), is expressed early upon infection, reducing antigen presentation and recognition of the EBV-infected B-cells by specific CTL [68]. In addition, the EBNA-1, encoded by the BKRF1 gene and expressed in most EBV-carrying cells, is poorly immunogenic, as it inhibits its own processing through the ubiquitin-proteasome system and the subsequent association of the derived peptides with the HLA-class I molecules [69].

Losing EBV-induced immunogenic proteins

A possible way for infected cells to evade the immune response during latency is to lower the expression of the most immunogenic EBV antigens. EBNA-3A, -3B and -3C are usually the dominant targets for EBV-specific CTL responses.

Table 1: Expression of EBV genes and proteins during the viral cycle and viral latency phase patterns associated with EBV related diseases [1,2]

<table>
<thead>
<tr>
<th>EBV genes</th>
<th>BKRF1</th>
<th>BYRF1</th>
<th>BLF-BERF (1, 2, 3/4)</th>
<th>BNLF1</th>
<th>BNLF2</th>
<th>BCRF1</th>
</tr>
</thead>
<tbody>
<tr>
<td>EBV-protein</td>
<td>EBNA-1</td>
<td>EBNA-2</td>
<td>EBNA-3 (A,B,C)</td>
<td>LMP-1</td>
<td>LMP-2 (A,B)</td>
<td>Not translated</td>
</tr>
<tr>
<td>Immunogenic properties *</td>
<td>-/+</td>
<td>+</td>
<td>++</td>
<td>-/+</td>
<td>-/+</td>
<td>-</td>
</tr>
<tr>
<td>EBV infection phase</td>
<td>Lytic phase **</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Latency phase</td>
<td>+</td>
<td>-/+</td>
<td>-/+</td>
<td>-/+</td>
<td>-/+</td>
<td>+</td>
</tr>
<tr>
<td>EBV latency patterns</td>
<td>Type 1 (Burkitt’s lymphoma)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Type 2 (nasopharyngeal carcinoma, Hodgkin’s lymphoma and NK/T-cell neoplasms)</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Type 3 (Infectious mononucleosis, AIDS associated lymphomas, post-transplant B-cell LPD)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Others (healthy carriers)</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

AIDS: Acquired Immunodeficiency Syndrome; CTL: Cytotoxic T Cells; EBV: Epstein Barr virus; EBNA: EBV Nuclear Antigens; LMP: EBV Latent Membrane Proteins; EBER: Early Region Epstein Barr Virus RNA; LPD: Lympho Proliferative Disorder; NFκB: Nuclear Factor kappa B; TNFR: Tumor Necrosis Factor Receptor; PKC: Protein Kinase C.

* Immunogenic properties for the generation of cytotoxic T cells; ** Other EBV antigens expressed during the lytic phase are the EBV-EA (early antigens), the EBV-MA (membrane antigen), the EBV-VCA (viral capsid antigen) and the EBV-AN (alkaline nuclease).
but examples of responses directed against other EBNA or the LMP have also been described [70]. Thus, the fact that EBV-infected tumor NK-cells do express only EBNA-1 and LMP-1/2 (type II latency pattern) may enable them to evade host CTL [58].

Producing immunosuppressive cytokines

Herpes viruses are able to produce cytokine homologues, some of which have immunosuppressive functions [71]. For instance, the EBV gene BCRLF1 encodes for a viral homolog of interleukin (IL)-10 (vIL-10), which impairs NK cell-mediated killing of infected cells, interferes with CD4+ T-cell activity, and modulates cytokine responses [68].

Inhibiting the cytotoxic response

Neutralizing the cytotoxic response by soluble Fasl and decoy receptors for FasL: Previous studies suggested that lymphoma cells are able to interfere with the Fas/Fas ligand (FasL) pathway, thereby escaping to apoptosis. In accordance, patients with NKTCL and ANKCL have been shown to have high levels of FasL in the serum, which may neutralize the Fas receptor expressing on CTL [72-74]. In addition, EBV-infected tumor cells, including NK-cell neoplasms, are able to produce decoy receptors for FasL, such DcR3 (decoy receptor type 3), which binds to FasL and inhibits FasL-induced apoptosis [75].

Expressing ectopic proteins that are able to suppress the cytotoxic response: The PCDH15C gene codes for the secreted isoform of the protocadherin 15, which, as other cadherins, is normally not expressed in hematopoietic cells [76]. Ectopic expression of PCH15C was described on tumor-derived NK-cell lines, as well as in tissue biopsies from patients with NKTCL [77]. The fact that cadherins are able to inhibit NK-cell mediated cytotoxicity by acting as ligands for inhibitory killer cell lectin type receptors (KLR), would suggest that this mechanism used by the NK-tumor cells to escape immunosurveillance [78].

Producing granzyme inhibitors: The main pathway used by NK-cells and CTL to kill their targets involves the release of the cytotoxic molecules contained in their granules, including perforin and granzymes. In particular, granzyme B acts by activating caspase-3, leading to apoptosis of the target cells. Cytotoxic cells have mechanisms to resist to their own cytotoxic effects [79]. Granzyme B-specific serine protease inhibitors, such as SERPINB9 (serine protease inhibitors 9, also known as PI9, protease inhibitors 9) protect effector cells from their own cytotoxic activity and may participate in tumor escape [80]. Unexpectedly, loss of expression of PI9 on tumor NK-cells seems to be a poor prognostic factor in NKTCL [81]. This paradoxical association was discussed in detail by the authors, which hypothesized that the loss of PI9 in NKTCL could reflect a dedifferentiation process associated with tumor progression involving the PI9 gene, with either gene deletion or inactivation due aberrant promoter hypermethylation as described for other genes such as P73 [81,82]. As also stated by the authors, other aspect to consider is the balance between pro-apoptotic (granzymes B and M) and anti-apoptotic (PI9) proteins. Indeed, the granzyme B released from intracellular granules into the cytoplasm of NK cells is rapidly inactivated by forming complexes with PI9, thereby protecting the NK-cells from a premature cell death; in turns PI9 may become inactivated through its cleavage by granzyme M [83,84], which is also expressed in the NK tumor cells [83,85].

Mechanism Used by EBV to Induce Cell Transformation

The HHVs, which include, among others, the EBV, also referred to as HHV-4, and the Kaposi’s sarcoma associated herpes virus (KSHV), also known as HHV-8, are known by their ability to induce cell transformation and oncogenesis. They are large double-stranded DNA viruses and are able to establish a lifelong latency in lymphoid cells, during which only a few viral genes are expressed and the viral genome persists as circular episomes. Episomes contain repetitive sequences that serve as binding sites for the viral DNA binding proteins, such as the EBNA-1 of EBV and Latency-Associated Nuclear Antigen (LANA1) of KSHV which are expressed during latency, associate with the viral genome and tether it to host chromosomes, assuring persistence of the virus [86]. This is crucial for virus survival, but also induces cell transformation and promotes oncogenesis, as some of the latency proteins and viral non-coding RNAs and micro-RNAs have biological properties that lead to immortalization of the infected host cells [87-127].

EBV Nuclear Antigens (EBNA)

The EBNA proteins act mainly by maintaining the virus in an episomal form and regulating the transcription of viral and cellular genes (Table 2) [87-104].

EBNA-1: EBNA-1, which is typically expressed in most EBV-related malignancies, binds to target sites on the viral DNA and controls episomal maintenance and replication, in concert with replication of the host cells. In addition, it acts as a transcriptional regulator allowing viral gene expression in latency, being therefore necessary for cell transformation [87]. Among other effects, it confers resistance to apoptosis by up-regulating the apoptosis suppressor protein survivin [88]. It also induces the Recombination Activating Genes (RAG), whose products, RAG-1 and -2, are essential for immunoglobulin and T-cell Receptor (TCR) gene recombination and increases in the levels of reactive oxygen species, resulting in genomic instability [89,90]. Furthermore, EBNA-1 interacts with regulatory proteins, including the HIV-associated ubiquitin-specific protease (HAUSP, USP7) and the karyopherins [91,92]. It also inhibits antigen processing and cell surface presentation by binding the TAP complex [93].

EBNA-2: The EBNA-2 is involved in transactivation of both viral and cellular gene promoters, such as LMP-1 and the EBNA Cp promoters, an effect that is at least partially mediated by the interaction with the cellular DNA binding proteins, J kappa and PU1 [94,95]. The centromere binding factor 1 (recombinating binding protein suppressor of hairless (CBF1/RBP)) kappa, a nuclear component of the Notch signaling pathway, is the most extensively studied partner [96,97]. The cleaved product of Notch is targeted to the nucleus where it binds to CBF1/RBP-kappa, and activates transcription. EBNA-2 induced up-regulation of cellular anti-apoptotic genes, such as bfl-1, also requires CBF1/RBP-kappa [97].

EBNA-3 family proteins: The EBNA-3 family proteins (3A, 3B and 3C) are able to inhibit EBNA-2 induced transactivation by interacting with two isoforms of J kappa (J kappa-1 and RBP-2N), thus being able to down-regulate J kappa-mediated transcription [97-101].

EBNA-LP: EBNA-LP acts mainly by co-activating EBNA-2-dependent transcription and binds to heat shock proteins (HSP) and other cellular proteins, such as DNA-protein kinases catalytic subunit (DNA-PK) and HA95 [102-104].

Latent Membrane Proteins (LMP)

The EBV-infected cells express three LMP (LMP-1, LMP-2A, and LMP-2B) during latency programs II and III, which interact with several cellular signaling pathways, thereby promoting the proliferation and survival of the infected cells and inducing cell transformation (Table 3) [105-118].
EBNA	**Relevant functions**	**Examples of major interactions**	**Evidence for role in cell transformation**	**References**
EBNA-1 | Important for the maintenance of viral episomes, viral DNA replication, and transcriptional activation of latent EBV genomes; implicated in cell immortalization and transformation; implicated in immune evasion. | HAUSP (USP7), Karyopherins 2 α and β; TAP/p32 | Yes | [87-93] |
EBNA-2 | Activation of viral and cellular promoters | PU.1; CBFI/RBP-J kappa | Yes | [94-97] |
EBNA-3A (EBNA-3) | Repression of the CBF1/RBP-J kappa dependent transcription | CBFI/RBP-J kappa; RBP-2N | Yes | [98, 101] |
EBNA-3B (EBNA-4) | | CBFI/RBP-J kappa; RBP-2N | No | [101] |
EBNA-LP (EBNA-5) | Co-activation of EBNA-2-dependent transcription | Hsp27; Hsp70 (Hsp72); Hsc70 (Hsp73); HAX-1; HAO5; alpha & beta tubulins; prostyly-4-hydroxylase alpha-1 subunit; p14ARF; Fte-1/S3a | Yes | [102-104] |
EBNA-3C (EBNA-6) | Repression of the CBF1/RBP-J kappa dependent transcription | CBFI/RBP-J kappa; RBP-2N | Yes | [99-101] |

EBNA-1 | Important for the maintenance of viral episomes, viral DNA replication, and transcriptional activation of latent EBV genomes; implicated in cell immortalization and transformation; implicated in immune evasion. | HAUSP (USP7), Karyopherins 2 α and β; TAP/p32 | Yes | [87-93] |
EBNA-2 | Activation of viral and cellular promoters | PU.1; CBFI/RBP-J kappa | Yes | [94-97] |
EBNA-3A (EBNA-3) | Repression of the CBF1/RBP-J kappa dependent transcription | CBFI/RBP-J kappa; RBP-2N | Yes | [98, 101] |
EBNA-3B (EBNA-4) | | CBFI/RBP-J kappa; RBP-2N | No | [101] |
EBNA-LP (EBNA-5) | Co-activation of EBNA-2-dependent transcription | Hsp27; Hsp70 (Hsp72); Hsc70 (Hsp73); HAX-1; HAO5; alpha & beta tubulins; prostyly-4-hydroxylase alpha-1 subunit; p14ARF; Fte-1/S3a | Yes | [102-104] |
EBNA-3C (EBNA-6) | Repression of the CBF1/RBP-J kappa dependent transcription | CBFI/RBP-J kappa; RBP-2N | Yes | [99-101] |

EBNA-1 acts as a constitutively activated receptor functionally homologous to the Tumour Necrosis Factor Receptor (TNFR) family members, such as CD40, thereby mimicking the CD40 signaling, activating the nuclear factor κ B (NF-κB) pathway and promoting cell survival [105-107]. Other signaling systems, such as the c-Jun N-terminal Kinase (JNK) and Janus kinase / Signal transducers and activators of transcription (JAK/STAT) -pathways, are also activated by LMP-1. In addition, LMP-1 up-regulates anti-apoptotic proteins, including A20 and Bcl-2 [108,109]. It may also alter the ratio of caspase-8, an initiator caspase, and its competitor FLIP (FLICE inhibitory protein) [110]. Moreover, LMP-1 induces the expression of the intercellular adhesion molecule -1 (ICAM-1) and the leukocyte function adhesion molecule (LFA) [109]. Finally, LMP-1 expressed in epithelial cells inhibits DNA repair and induces micronuclei formation, chromosomal aberrations, and genomic instability [111].

LMP-1 | **LMP-1 acts as a constitutively activated receptor functionally homologous to the Tumour Necrosis Factor Receptor (TNFR) family members, such as CD40, thereby mimicking the CD40 signaling, activating the nuclear factor κ B (NF-κB) pathway and promoting cell survival [105-107]. Other signaling systems, such as the c-Jun N-terminal Kinase (JNK) and Janus kinase / Signal transducers and activators of transcription (JAK/STAT) -pathways, are also activated by LMP-1. In addition, LMP-1 up-regulates anti-apoptotic proteins, including A20 and Bcl-2 [108,109]. It may also alter the ratio of caspase-8, an initiator caspase, and its competitor FLIP (FLICE inhibitory protein) [110]. Moreover, LMP-1 induces the expression of the intercellular adhesion molecule -1 (ICAM-1) and the leukocyte function adhesion molecule (LFA) [109]. Finally, LMP-1 expressed in epithelial cells inhibits DNA repair and induces micronuclei formation, chromosomal aberrations, and genomic instability [111].**

LMP-2A and LMP-2B | **LMP-2A and LMP-2B, which are generated by alternative splicing, interact with SH2-domain-containing proteins, such as the immunoglobulin receptor-induced kinase Lyn. Together with LPM-1, LMP-2A promotes lymphoma cell survival via TNF Receptor Associated Factor (TRAF) 2 regulation of the NF-κB pathway [112]. In addition, it possesses an Immunoreceptor Tyrosine-Based Activation Motif (ITAM) which binds the Syk kinase in its activated state and mimics the B-cell Receptor (BCR) signal [113]. Thus, LMP-2A promotes B cell survival in the absence of normal BCR signalling, suggesting a role in helping EBV-infected cells to persist in vivo [114]. In addition, EBV mutants with a deleted LMP-2A gene fail to allow germinal centre B cells to survive [115]. However, there is also evidence that LMP2A blocks the signalling function of the BCR, excludes the germinal centre B cells to survive [115]. However, there is also evidence that LMP-2A blocks the BCR signal and inhibits cell proliferation and transformation [116]. LMP-2A has also been shown to activate phospho-inositide 3-kinase (p14ARF; Fte-1/S3a)

EBV Non Coding RNAs

Non-coding RNAs from viral origin (EBERs) play important immunoregulatory functions by interacting with cellular proteins, and EBV non-coding micro-RNAs act by suppressing the expression of viral and host cell genes (Table 4) [119-127].

EBV-encoded RNAs | **The EBERs are expressed abundantly in latently EBV-infected cells and interact with various cellular proteins, playing a key role in modulating the anti-viral immunity, as well as in cell survival and cell growth [119]. They bind the protein kinase RNA-dependent (PKR) and inhibit its activation, leading to resistance to PKR-mediated apoptosis. EBERs also bind retinoic-acid inducible gene 1 (RIG-1), a sensor of innate immunity, and activate its downstream signalling, which induces expression of type-I interferons (IFN). Furthermore, they induce IL-10 in Burkitt's lymphoma cells, an effect produced via RIG-1-mediated activation of IRF-3. It was reported that the EBERs secreted from EBV-infected cells are recognized by the toll-like receptor type 3 (TLR3), leading to induction of type-I IFNs and inflammatory cytokines. In addition, EBERs induce the expression of Insulin-Like Growth Factor (IGF)-1 in carcinoma cells and IL-9 in T cells. Furthermore, EBER-2 plays a critical role in B cell growth transformation by inducing IL-6 production [120].**

EBV micro-RNAs | **Micro-RNAs (mi-RNAs) are small non-coding single stranded RNAs that down-regulate gene expression at the post-transcriptional level, by binding mRNAs bearing complementary sequences. EBV encodes dozens of mi-RNAs which can be divided into two groups: BHRF1 mi-RNAs and BART mi-RNAs [121-123]. Viral mi-RNAs interfere with the expression of viral and cellular genes and deregulate the mi-RNA profile of the host cells, in order to establish a latent infection, to inhibit the apoptosis and to promote the cell cycle progression [121-123]. They are expressed in all forms of latency, and they may play a central role in the EBV-induced tumorigenesis [124,125]. The mi-RNA profiling of diffuse large B-cell lymphoma and NKTCL showed that only 2% of the mi-RNAs are derived from the virus, while viral mi-RNAs comprise up to 20% of the total mi-RNA in nasopharyngeal carcinoma. Some of the targets identified so far are the mi-RNAs codifying for caspase 3, p53 up-regulated modulator of apoptosis (PUMA), interleukin 1 alpha (IL-1A), IFN-inducible T cell attracting chemokine (ITAC, CXCL11) and BCL6 (B-cell CLL/ lymphoma type 6) protein [124-127].**

Chronic Active EBv-Infection And Ebv-Related Lymphoproliferative Disorders

Chronic active EBV (CAEBV) infection may develop in some individuals, as a result of an inappropriate control of viral replication, giving rise to EBV-associated lymphoproliferative disorders (EBV-LPD), which include both pre-malignant and malignant conditions [128-150].
Patients with congenital or acquired immunodeficiency are at increased risk for EBV-LPD, which are among the most common causes of B-cell lymphomas. However, the virus has been implicated in various kinds of epithelial tumors, as well as in the development of T- or NK-cell LPD, chronic active EBV disease, and hydroa vacciniforme. This EBV-LPD is rare and predominantly occurs in East Asian countries, where it results from a prolonged (≥3 months) infectious mononucleosis-like illness caused by EBV [137,138].

EBV-associated T/NK lymphoproliferative disorders

EBV-associated T/NK-cell LPD comprise a large spectrum of polyclonal, oligoclonal, and monoclonal proliferations of EBV-infected T- or NK-cells in which at least four entities have been distinguished from the clinical point of view, with overlapping features: chronic active EBV disease, chronic active EBV (CAEBV) disease, EBV-associated hemophagocytic lymphohistiocytosis (HLH), and hydroa vacciniforme (HV). This EBV-LPD is rare and predominantly occurs in East Asian countries, where it results from a prolonged (≥3 months) infectious mononucleosis-like illness caused by EBV [137,138]. This EBV-LPD is rare and predominantly occurs in East Asian countries, where it results from a prolonged (≥3 months) infectious mononucleosis-like illness caused by EBV [137,138].

Table 3: Functions and interactions of the EBV latent membrane proteins (LMP).

<table>
<thead>
<tr>
<th>LMP</th>
<th>Relevant functions</th>
<th>Examples of major interactions</th>
<th>Evidence for role in oncogenesis</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMP-1</td>
<td>Constitutively activated receptor functionally homologous to CD40 / mimics CD40 signaling. Activates the NFkB, JNK kinase, JAK/STAT, MAPK and PKC pathways. Up-regulates anti-apoptotic proteins, including A20 and BCL2. Induces cell adhesion and immune regulatory membrane proteins. Inhibits DNA repair and induces microenvironment, chromosomal aberrations, and genomic instability.</td>
<td>RAF 1,2,3, TRADD, TRAM 1 LMP-1 LMP-2A</td>
<td>Yes (anti-apoptotic effect; survival of lymphoma cells; tumors in transgenic animals)</td>
<td>[105-111]</td>
</tr>
<tr>
<td>LMP-2B</td>
<td>Modulates LMP-2A function</td>
<td>LMP-2A</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>

Table 4: Functions and interactions of the EBV non-coding RNAs.

- **EBV non-coding RNAs (EBERs)**: Contains multiple types of non-coding RNA transcripts, including EBER-1 (168 nucleotides) and EBER-2 (172 nucleotides), which act as regulators of signaling and transcription factors.
- **EBV micro-RNAs (mi-RNAs)**: Small non-coding RNAs (19-95 nucleotides) that down-regulate the expression of mRNAs and negative regulators of cell survival.

References

1. AIP4: Atrophin-1-Interacting Protein 4 (Nedd4-Like E3 Ubiquitin Ligase); BCR: B-Cell Receptor; BRAM: BMP Receptor Associated Molecule; JAK: Janus Kinase; JNK: C-Jun N-Terminal Kinase; LMP: Epstein Barr Virus-Encoded Latent Membrane Protein; MAP: Mitogen-Activated Protein Kinase; NEDD4: Neural Precursor Cell Expressed Developmentally Down-Regulated Protein 4 (E3 Ubiquitin Ligase); Nfκb: Nuclear Factor κB; RAF: Rapidly Accelerated Fibrosarcoma Kinases; PKB: Protein Kinase B; Also Known As Akt; Tumor Necrosis Factor Receptor Type 1-Associated DEATH Domain Protein; Src: Short For “Src” (Tyrosine Kinase); Syk: Spleen Tyrosine Kinase (Member Of The Syk Family Tyrosine Kinase); TRAF: TNF Receptor Associated Factor; ZAP-70: Zeta-Chain-Associated Protein Kinase 70

BM: Bone Marrow; CAEBV: Chronic Active EBV Disease; EA: Early Antigen; EBV: Epstein Barr Virus; HLH: EBV-Associated Hemophagocytic Lymphohistiocytosis; HV: Hydroa vacciniforme (formae)

The expansion of EBV-infected T- or NK-cells, while in the western countries it is usually associated with EBV-infected B-cells [139]. It presents mainly in children, although adults can also be affected [140]. Clinical manifestations include fever, pancytopenia, adenopathies, hepatosplenomegaly, organ inflammatory diseases such as hepatitis, uveitis, interstitial pneumonitis, nephritis, as well as cutaneous manifestations, such as HV eruptions, and hypersensitivity to mosquito bites [141]. A Japanese survey of 82 patients with CAEBV showed that the disease has a high-morbidity and mortality and revealed that patients with late onset of disease, thrombocytopenia, and T/NK-cell infection have poorer outcomes [138].

EBV-associated hemophagocytic lymphohistiocytosis: EBV-associated Hemophagocytic Lymphohistiocytosis (HLH) manifests mainly as a Hemophagocytic Syndrome (HS) involving the BM or other organs and resulting in pancytopenia [142]. As CAEBV disease, the HLH is also more frequently seen in the East Asian countries, where it affects mostly children, although it may also present in adults [143]. It results from the expansion of EBV+ T-cells or NK-cells which produce inflammatory cytokines, thereby inducing macrophage activation and hemophagocytosis [144]. Patients usually have fever, splenomegaly and cytopenias, hypertriglyceridaemia and hypofibrinogenemia, and hemophagocytosis in the BM, spleen, and/or LN [142].

Severe mosquito bites allergy: Severe Mosquito Bite Allergy (SMBA) is a syndrome characterized by fever and a skin reaction to mosquito bites consisting of ulcers, necrosis, and scarring, usually designated as Hypersensitivity to mosquito Bites (HSB) [145,146]. Although it was thought for a long time to represent a severe allergic reaction, it has become evident its relationship to EBV infection, as it is usually associated with fever, hepatosplenomegaly, pancytopenia, uveitis, pneumonitis, and hypersensitivity to mosquito bites. It primarily affects children, although it may also be present in adults [144]. It results from the expansion of EBV-infected T-cells or NK-cells which produce inflammatory cytokines, thereby inducing macrophage activation and hemophagocytosis [144]. Patients usually have fever, splenomegaly and cytopenias, hypertriglyceridaemia and hypofibrinogenemia, and hemophagocytosis in the BM, spleen, and/or LN [142].

Hydroa vacciniforme: Hydroa vacciniforme (HV) is an EBV-related disease that manifests in childhood as a photosensitivity disorder although HV lesions can also be observed in patients with CAEBV. The most frequent skin manifestations include redness, blisters, scars, itching, and burning, predominantly on sun-exposed areas; other common manifestations are oral ulcers, eye ulcers and abdominal pain [149,150]. The majority of the EBV-infected cells are gamma/delta T-cells [130].

Conclusion

The EBV is a ubiquitous HHV that leads to a lifelong infection which is continually checked by the immune system. The virus uses multiple mechanisms to evade the immune surveillance and its genome encodes for multiple products that interact with, or exhibit homology to, a wide variety of molecules with important biological effects, such as anti-apoptotic factors, growth factor receptors, cytokines and signal transducers, thereby promoting both EBV infection and cell immortalization and transformation.

EBV-related diseases occur when the immune system fails to control the virus, leading to a chronic active EBV infection and associated LPD and/or when EBV-related malignancies develop. In western countries, the EBV-related LPD and lymphoid neoplasms are in nearly all instances of B-cell lineage and usually occur in patients with congenital or acquired immunodeficiency. However, the virus has also been implicated in the genesis of the T- and NK-cell LPD, especially in Asia, where they affect children without known underlying immunodeficiencies and lead to the development of T- or NK-cell tumors.

Acknowledgement

The author thanks to the medical doctors (Catarina Lau, Maria dos Anjos Teixeira) and other professionals (Ana Helena Santos, Lurdes Oliveira, Maria

<table>
<thead>
<tr>
<th>Disease type</th>
<th>Criteria for diagnosis</th>
<th>Exclusion criteria</th>
<th>EBV+ cells</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chronic active EBV disease (CAEBV)</td>
<td>1) EBV-related illness with z 3 months duration 2) Disease manifestations may include fever, hepatitis, adenopathy, hepatosplenomegaly, pancytopenia, uveitis, pneumonitis, hydroa vacciniforme-like skin eruptions and hypersensitivity to mosquito bites. 3) EBV detected by Southern blot hybridization or EBER-positive cells in affected tissues or peripheral blood; ≥10^3 copies/μg of EBV DNA in peripheral blood mononuclear cells; liters of anti-EBV IgG antibodies: anti-VCA ≥ 5120 or anti-EA > 640.</td>
<td>1) Other immunological abnormalities or infections that might explain the observed condition. 2) Congenital immunodeficiency including X-linked lymphoproliferative disorders.</td>
<td>T-cells or NK-cells</td>
<td>[129,137,138,141]</td>
</tr>
<tr>
<td>Hemophagocytic lymphohistiocytosis (HLH)</td>
<td>1) Fever and splenomegaly 2) Cytopenias affecting two or three lineages, hypertriglyceridemia, and/or hypofibrinogenemia. 3) Hemophagocytosis in the BM, spleen and/or LN.</td>
<td></td>
<td>T-cells or NK-cells</td>
<td>[129,142]</td>
</tr>
<tr>
<td>Severe mosquito bite allergy (SMBA)</td>
<td>Hypersensitivity to mosquito bites, characterized by high fever after mosquito bites, ulcers, necrosis, and scarring.</td>
<td></td>
<td>T-cells</td>
<td>[129,145,146]</td>
</tr>
<tr>
<td>Hydroa vacciniforme (HV)</td>
<td>Recurrent vesiculo-papules with central umbilication and crust formation, usually occurring on the sun-exposed areas.</td>
<td></td>
<td>T-cells (usually gamma / delta)</td>
<td>[129,149,150]</td>
</tr>
</tbody>
</table>

BM: Bone Marrow; CAEBV: Chronic Active EBV Disease; EA: Early Antigen; EBV: Epstein Barr Virus; HLH: EBV-Associated Hemophagocytic Lymphohistiocytosis; HV: Hydroa Vacciniforme; LN: Lymph Nodes; NK: Natural Killer; SMBA: Severe Mosquito Bite Allergy; VCA: Viral Capsid Antigen

'Severe mosquito bites allergy' and 'hydroa vacciniforme' are used as clinical categories, while the terms 'hypersensitivity to mosquito bites' and 'hydroa vacciniforme-like eruptions' were used to designate disease manifestations.
Luis Queirós, Marlene Santos, Marta Gonçalves and Sônia Fonseca) and collaborators (João Rodrigues, Magdalena Leander) of the Cytometry Laboratory, for the support concerning NK-cell immunophenotyping and diagnosis of NK-cells lymphoproliferative disorders. She also thanks to the medical doctors who have referred patients with suspicion of NK-cell LPD for study.

References

