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Commentary
Bioactive polymers mainly polysaccharides such as cellulose, chitin,

amylose and beta-glucan are well discovered from various sources in
nature. Amongst chitin, as the second most abundant polysaccharides
after cellulose, is known as a highly insoluble polysaccharide
consisting of β-4-linked N-acetyl-D-glucosamine, which has been
identified as a structural component of crustaceans, crabs, shrimps,
insects, and other arthropods, as well as a component of the cell walls
of fungi [1] and some alga [2]. Although various bioactive functions
are characterized well, less is known about the relationship between
structure of biopolymers and their physiological/biological activities.
Therefore, more efficient utilization of these raw materials is being
required in various fields like in pharmaceutical, medical, agricultural
and industrial applications. Since biopolymers are interesting in
various applications described above, especially marine alga are of
focusing as the plentiful sources for various bioactive compounds
including proteins, poly-phenolic compounds, carotenoids and
polysaccharides, which was identified as cell wall structural or
intercellular components. Structural specificities, substitution patterns
and polymerization degrees of polysaccharides are prerequisites of
physical and functional properties in alga, even though other
biopolymers such as proteoglycans, polymeric phenolics and proteins
may participate in the synergic activities and the formation of algal cell
wall. Great variability of cell wall polysaccharides in marine alga has
been identified to be involved in the determination of the species or
taxa, and developmental stages of life-cycle. In general, alga have been
grouped into mainly Clorophyta (green algae), Rhodophyta (red algae)
and Phaephyta (brown algae). These alga produce various bioactive
compounds including sulphated polysaccharides as in complex
composite cell walls consisting of cellulose, sulfated galactans, xylan or
mannan fibrils. For instance, green algae of Ulvophyceae consists of
sulphated (1→3)-β-D-galactans [3] and sulfated glucuronofucan
containing both fucofuranose and fucopyranose residues were
identified from the brown alga Chordaria flagelliformis [4]. As
described above, it is very hard to identify their structural components
in precise. In addition, more complex compounds which were highly
branched sulphated hetero-polysaccharides of brown alga were
assigned from many different origins. Eventually, both sulphated and
carboxylated algal polysaccharides are known to exhibit biological
activities such as anti-herpetic [5], anti-coagulant [5,6], anti-
inflammatory [7], anti-tumor [8], anti-microbial [9], immune-
modulatory [10], anti-viral activities [11] and etc. Among them,
immuno-modulating and anti-coagulant activities seem to be the most
potent biological activities for understanding the mechanism of action
of algal polysaccharides [5,6,10,12]. Therefore, the geometry of
glycosidic linkages to get better understanding for physical or chemical
properties of algal polysaccharides is critically important. Besides
marine algal cell wall polysaccharides, in recent, alpha-amylose like
polysaccharide consisting of glucose mainly was identified from a

photosynthetic microalgae Dunaliella tertiolecta [13], which was
isolated as a biodiesel producer. It can be effectively converted into
glucose by enzymatic or acidic hydrolysis, which recovered over 90%
of glucose from the defatted cell wall. High potential production of
algal biomass and efficient conversion to glucose may allow further
exploration for industrial exploitation of bio-ethanol. It suggested that
micro-algal defatted biomass can provide the significant commercial
potential to increase net ethanol production as an alternative bio-
resource replaceable of corn or edible starch. Therefore polysaccharide
derived from the defatted biomass of D. tertiolecta and characterized
as a homo-polysaccharide consisting of glucose is a promising
candidate for industrial exploitation for ethanol production in aspect
of bio-refinery [13]. According to many reports, polysaccharides
obtained in homo- or hetero complexes from many different kinds of
alga including photosynthetic microalga and other species have great
potential for bioactive materials, bio-ethanol and medicinal
applications, because of their biocompatibility with the human tissues,
biodegradability and non-toxicity.
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