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Abstract
We constructed the high-expression ALK activated transport and signal network in human hepatocellular carcinoma 

(HCC) compared with low-expression (fold change ≥2) no-tumor hepatitis/cirrhotic tissues (HBV or HCV infection) in 
GEO data set, by using integration of gene regulatory activated and inhibited network inference method with gene 
ontology (GO) analysis. Our result showed that ALK transport and signal upstream network ECT2, FOLR1, GNAZ, 
GRM1, ITGA2, LEF1, NR5A1, PTHLH, RIMS3, SORT1, SOX2 activated ALK, and downstream ALK-activated BAP1, 
CAD, CDH13, CNTNAP2, GRM1, ITGA2, LAPTM4B, MAP2K6, NR5A1, STMN1 in HCC. We obtained that the different 
biological processes of ALK activated network consisted of folic acid transport, cell surface receptor linked signal 
transduction, cell-cell signaling, G-protein coupled receptor protein signaling pathway, integrin-mediated signaling 
pathway, intracellular signaling cascade, low density lipoprotein mediated signaling, Rac protein signal transduction, 
Rho protein signal transduction in HCC compared with the activated network of no-tumor hepatitis/cirrhotic tissues, as 
a result of inducing folic acid transport and integrin signal induced-angiogenesis in HCC. Our hypothesis was verified 
by the different and the same biological processes of ALK activated transport and signal network of HCC compared 
with the corresponding inhibited network of no-tumor hepatitis/cirrhotic tissues and HCC, respectively.
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Introduction
ALK is our identified significant high-expression gene in human 

hepatocellular carcinoma (HCC) compared with low-expression 
(fold change ≥2) no-tumor hepatitis/cirrhotic tissues (HBV or HCV 
infection) from GEO data set GSE10140-10141 (http://www.ncbi.nlm.
nih.gov/geo/query/acc.cgi?acc=GSE10140, http://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc=GSE10141). ALK is related to integral to 
plasma membrane, membrane; nucleotide binding, transmembrane 
receptor protein tyrosine kinase activity, receptor signaling protein 
tyrosine kinase activity, receptor activity, protein binding, ATP binding, 
transferase activity; protein amino acid phosphorylation, protein 
amino acid N-linked glycosylation, transmembrane receptor protein 
tyrosine kinase signaling pathway, nervous system development, brain 
development (GO database).

Folic acid transport, integrin signal and lipoprotein are involved 
in angiogenesis. Such as, Folic-acid-mediated inhibition of human 
colon-cancer cell growth [1]; The Foxc2 transcription factor modulates 
angiogenesis via induction of integrin beta3 expression [2]; alphavbeta3 
integrin and a moody integrin angiogenesis in a changing environment 
[3]; Active tumor targeting of nonmaterial’s using folic acid, integrin 
receptors and transferring [4]; Role of tetraspanin CD151-alpha3/alpha6 
integrin complex in angiogenesis [5]; Integrin affinity modulation 
in angiogenesis [6]; RECK function of ss1-integrin-dependent in 
physiologic and tumor angiogenesis [7]; Activation of Ras/MAP kinase 
is required in high density lipoprotein-induced angiogenesis in human 
coronary artery endothelial cells [8]; Collateral formation Impairment 
in lipoprotein(a) transgenic mice therapeutic angiogenesis induced by 
human hepatocyte growth factor gene [9]; Homocysteine and folic acid 
effects on angiogenesis and VEGF expression during chicken vascular 
development [10]; Pharmacological inhibition of integrin alphavbeta3 
aggravates experimental liver fibrosis and inhibits hepatic angiogenesis 
[11]; Lipoprotein contributes to angiogenesis on the chick embryo 
chorioallantoic membrane [12]; Interaction of alpha9beta1 integrin 
with thrombospondin-1 promotes angiogenesis [13]; Reconstituted 

high-density lipoprotein enhances differentiation of endothelial 
progenitor cells and stimulates ischemia-induced angiogenesis [14]; 
Angiogenesis requires Beta1 integrin expression on endothelial cells but 
not vasculogenesis [15]; Integrin alpha9beta1 directly binds to vascular 
endothelial growth factor (VEGF)-A and induces VEGF-A-induced 
angiogenesis [16]; A novel mediator of ovarian angiogenesis follicular 
fluid high density lipoprotein-associated sphingosine 1-phosphate [17]; 
Integrin-linked kinase modulates melanoma angiogenesis by activating 
NF-kappaB/interleukin-6 signaling pathway [18]; Relationship 
between oxidized lipoprotein, human coronary atherosclerotic plaque 
stabilization and angiogenesis [19]; Possible roles for folic acid in the 
modulation of trophoblast invasion and placental development in 
normal early human pregnancy [20]; Alpha(5)beta(1) integrin ligand 
PHSRN contributes invasion and alpha(5) mRNA in endothelial cells 
to stimulate angiogenesis [21]. Yet the distinct high-expression ALK 
folic acid transport and integrin signal induced-angiogenesis network 
in HCC remains to be elucidated. Here we constructed the high-
expression ALK activated transport and signal network in HCC from 
GEO data set by gene regulatory network inference method based on 
linear programming and decomposition procedure. 

In this study, we constructed ALK up- and down-stream activated 
and inhibited transport and signal network in no-tumor hepatitis/
cirrhotic tissues and HCC. The biological process and data analysis of 
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the low- and high-expression ALK transport and signal network was 
done in no-tumor hepatitis/cirrhotic tissues (HBV or HCV infection) 
and HCC by GO database. By comparison with the same and different 
gene ontology (GO) of ALK activated and inhibited transport and 
signal network between no-tumor hepatitis/cirrhotic tissues and HCC, 
we put forwards hypothesis of ALK activated transport and signal 
network of inducing folic acid transport and integrin signal induced-
angiogenesis in HCC.

Materials and Methods
We used microarrays containing 6,144 genes from 25 no-tumor 

hepatitis/cirrhotic tissues and 25 HCC patients in GEO data set 
GSE10140-10141(http://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE10140, http://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE10141). The raw microarray data was preprocessed by log 
base 2.

Significant expressed genes of ALK transport and signal network 
were identified using significant analysis of microarrays (SAM) (http://
wwwstat.stanford.edu/~tibs/SAM/) [22]. We selected two classes 
unpaired and minimum fold change ≥2 and chose the significant 
highly expressed value genes of HCC compared with that of no-tumor 
hepatitis/cirrhotic tissues (HBV or HCV infection) under the false-
discovery rate and q-value were 0%. The q-value is like the well-known 
P-value, but adapted to multiple-testing situations.

ALK transport and signal network was constructed based on 
GRNInfer and GVedit tools (http://www.graphviz.org/About.
php). GRNInfer is a novel mathematic method called GNR (Gene 
Network Reconstruction tool) based on linear programming and 
a decomposition procedure for inferring gene network [23]. We 
established ALK activated network of HCC based on the fold change ≥2 
distinguished genes and selected parameters as lambda 0.0 because we 
used one data set. Lambda was a positive parameter which balanced the 
matching and sparsity terms in the objective function. Using different 
thresholds, we could predict various networks with the different edge 
density. The threshold parameters make the edge whose strength of 
link is smaller than threshold not shown in the network graph. The 
smaller this parameter, the more edges in the network graph. We 
selected threshold 1.0e-7. 

ALK transport and signal network of HCC was analyzed using 
Molecule Annotation System, MAS (CapitalBio Corporation, Beijing, 
China; http://bioinfo.capitalbio.com/mas3/). MAS is a Web-based 
software toolkit for a whole data mining and function annotation 
solution to extract and analyze biological molecules relationships from 
public databases. The primary databases of MAS integrated various 
well-known biological resources, such as Gene Ontology (http://www.
geneontology.org), KEGG (http://www.genome.jp/kegg/), BioCarta 
(http://www.biocarta.com/), GenMapp (http://www.genmapp.org/), 
HPRD (http://www.hprd.org/), MINT (http://mint.bio.uniroma2.it/
mint/Welcome.do), BIND (http://www.blueprint.org/), Intact (http://
www.ebi.ac.uk/intact/), UniGene (www.ncbi.nlm.nih.gov/UniGen), 
OMIM (http://www.ncbi.nlm.nih. gov/entrez/query.fcgi?db=OMIM) 
and disease (http://bioinfo.capitalbio.com/mas3/). MAS offers various 
query entries and graphics. The algorithm is P, Q value in GO and 
pathway of module was presented in reference [24].

Results
We constructed ALK up- and down-stream activated and inhibited 

transport and signal network in no-tumor hepatitis/cirrhotic tissues 
and HCC from our total network of 225 significant high-expression 

molecules (fold change ≥2) from 6,144 genes of 25 HCC compared 
with 25 no-tumor hepatitis/cirrhotic tissues (HBV or HCV infection) 
by GRNInfer, respectively.

We extracted the biological process of GO terms and did numbers 
data analysis of the different biological processes of ALK activated 
transport and signal network in HCC compared with activated network 
of no-tumor hepatitis/cirrhotic tissues, the same biological processes of 
ALK activated transport and signal network in HCC compared with 
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Figure 1: ALK upstream activated transport and signal network in HCC by 
GRNInfer. Arrowhead represents activation relationship.
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Figure 2: ALK downstream activated transport and signal network in HCC by 
GRNInfer. Arrowhead represents activation relationship.
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inhibited network of no-tumor hepatitis/cirrhotic tissues, as shown 
in Table 1. GO terms and numbers data was analyzed the different 
biological processes of ALK activated compared with inhibited 
transport and signal network in HCC, as shown in Table 2.

ALK activated transport and signal network was constructed in 
HCC. Our result showed that upstream ECT2, FOLR1, GNAZ, GRM1, 
ITGA2, LEF1, NR5A1, PTHLH, RIMS3, SORT1, SOX2 activated ALK, 
and the downstream ALK-activated BAP1, CAD, CDH13, CNTNAP2, 
GRM1, ITGA2, LAPTM4B, MAP2K6, NR5A1, STMN1 in HCC, as 
shown in Figure 1 and Figure 2. 

Discussion
Our aim is to construct, interpret, verify and predict the function 

of novel high-expression ALK folic acid transport and integrin signal 
induced-angiogenesis network in HCC. We have already constructed 
and analyzed some novel molecular network from different databases 
presented in our articles [24-37]. In this study, we constructed ALK 
up- and down-stream activated and inhibited transport and signal 
network in no-tumor hepatitis/cirrhotic tissues and HCC. The 
biological process and data analysis of the low- and high-expression 
ALK transport and signal network was done in no-tumor hepatitis/
cirrhotic tissues (HBV or HCV infection) and HCC by GO database. 
By comparison with the same and different gene ontology (GO) of 
ALK activated and inhibited transport and signal network between no-
tumor hepatitis/cirrhotic tissues and HCC, we put forwards hypothesis 
of ALK activated transport and signal network of inducing folic acid 
transport and integrin signal induced-angiogenesis in HCC.

We extracted the biological process of GO terms and did numbers 
data analysis of the different biological processes of ALK activated 
transport and signal network in HCC compared with activated network 
of no-tumor hepatitis/cirrhotic tissues, the same biological processes 
of ALK activated transport and signal network in HCC compared 
with inhibited network of no-tumor hepatitis/cirrhotic tissues (Table 

1 and Table 2). We constructed the high-expression ALK activated 
transport and signal network in human hepatocellular carcinoma 
(HCC) compared with low-expression (fold change ≥2) no-tumor 
hepatitis/cirrhotic tissues (HBV or HCV infection) in GEO data set 
using integration of gene regulatory network inference method. Our 
result showed that ALK transport and signal upstream network ECT2, 
FOLR1, GNAZ, GRM1, ITGA2, LEF1, NR5A1, PTHLH, RIMS3, 
SORT1, SOX2 activated ALK, and downstream ALK-activated BAP1, 
CAD, CDH13, CNTNAP2, GRM1, ITGA2, LAPTM4B, MAP2K6, 
NR5A1, STMN1 (Figure 1 and Figure 2) in HCC. 

By further comparison with the same and different gene ontology 
(GO) of ALK activated and inhibited transport and signal network 
between no-tumor hepatitis/cirrhotic tissues and HCC, we obtained 
that the different biological processes of ALK activated network 
consisted of folic acid transport, cell surface receptor linked signal 
transduction, cell-cell signaling, G-protein coupled receptor protein 
signaling pathway, integrin-mediated signaling pathway, intracellular 
signaling cascade, low density lipoprotein mediated signaling, Rac 
protein signal transduction, Rho protein signal transduction in HCC 
compared with activated network of no-tumor hepatitis/cirrhotic 
tissues, as a result of inducing folic acid transport and integrin signal 
induced-angiogenesis in HCC.

The same biological processes of ALK activated network included 
transport, cell surface receptor linked signal transduction, cell-cell 
signaling, G-protein signaling, signal transduction in HCC compared 
with inhibited network of no-tumor hepatitis/cirrhotic tissues. It is 
consistent with the different biological processes of ALK activated 
transport and signal network of HCC compared with activated network 
of no-tumor hepatitis/cirrhotic tissues.

The different biological processes of ALK activated network 
consisted of endosome to lysosome transport, endosome transport 
via multivesicular body sorting pathway, folic acid transport, Golgi to 

The Different ALK Activated Transport and Signal Network of HCC compared with Activated Network of No-tumor
 Hepatitis/cirrhotic Tissues

Terms Numbers Terms Numbers
folic acid transport 1 Rho protein signal transduction 1
cell-cell signaling 3 low density lipoprotein mediated signaling 1
integrin-mediated signaling pathway 2 cell surface receptor linked signal transduction 1
intracellular signaling cascade 3 G-protein coupled receptor protein signaling pathway 3

Rac protein signal transduction 1

The Same ALK Activated Transport and Signal Network of HCC compared with Inhibited Network of No-tumor Hepatitis/cirrhotic Tissues
Terms Numbers Terms Numbers

transport 2 cell surface receptor linked signal transduction 1
G-protein signaling 1 signal transduction 7
cell-cell signaling 3    

Table 1: GO Terms and numbers data analysis of the different biological processes of ALK activated transport and signal network of HCC compared with activated network 
of no-tumor hepatitis/cirrhotic tissues, the same  biological processes of ALK activated transport and signal network of HCC compared with inhibited network of no-tumor 
hepatitis/cirrhotic tissues.

The Different ALK Activated Transport and Signal  Network of HCC compared with Inhibited Network of HCC 
Terms Numbers Terms Numbers

endosome to lysosome transport 1 intracellular signaling cascade 3
folic acid transport 1 integrin-mediated signaling pathway 2
Golgi to endosome transport 1 Rac protein signal transduction 1
plasma membrane to endosome transport 1 Rho protein signal transduction 1
endosome transport via multivesicular body sorting pathway 1 low density lipoprotein mediated signaling 1
cell surface receptor linked signal transduction 1 induction of apoptosis by extracellular signals 1

Table 2: GO Terms and numbers data analysis of the different biological processes of ALK activated transport and signal network of HCC compared with inhibited network 
of HCC.
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endosome transport, plasma membrane to endosome transport, cell 
surface receptor linked signal transduction, induction of apoptosis by 
extracellular signals, integrin-mediated signaling pathway, intracellular 
signaling cascade, low density lipoprotein mediated signaling, Rac 
protein signal transduction, Rho protein signal transduction in 
HCC compared with inhibited network of HCC. It is consistent 
with the different biological processes of ALK activated transport 
and signal network of HCC compared with activated network of no-
tumor hepatitis/cirrhotic tissues, the same biological processes of 
ALK activated transport and signal network of HCC compared with 
inhibited network of no-tumor hepatitis/cirrhotic tissues, respectively.

Therefore, our ALK activated folic acid transport and integrin 
signal induced-angiogenesis hypothesis was verified by the different 
and the same biological processes of ALK activated transport and 
signal network of HCC compared with the corresponding inhibited 
network of no-tumor hepatitis/cirrhotic tissues and HCC, respectively.
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