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Editorial

Alzheimer’s Disease (AD) is a progressive degenerative disease
affecting the central nervous system, characterized by early memory
impairments followed by cognitive deficit as aphasia, agnosia and
apraxia. AD affects over 35 million individuals worldwide and is
expected to affect 115 million by 2050 [1]. Cellular and molecular
neurodegeneration detected in AD is characterized by synapse and
neuronal loss, extracellular amyloid β (Aβ) peptide accumulation and
intracellular neurofibrillary tangles (hyperphosphorylated tau) [2,3].
Less than 1% of AD cases are familial, (onset before 60 to 65 years of
age) due to mutations in three genes,   APP, presenilin  1   (PSEN1),
and  presenilin  2   (PSEN2),  all involved in Abeta overproduction [4].
To date, high Ab levels were suggested to trigger neuronal
dysfunctions as major contributors to disease development in the
familial form of AD, but for the majority of AD cases, also called
sporadic AD, with no obvious genetic bases, other mechanisms are
expected to be responsible.

Recently, expression profiles of microRNA (miRNA) in Alzheimer’s
disease brain revealed alterations in many individual miRNAs, and
several in vitro and in vivo studies have suggested that a deregulated
microRNA expression could contribute to AD [5,6].

MicroRNAs are small 20-22-nucleotides, double stranded non-
coding RNAs, that modulate gene expression at the post-
transcriptional level [7]. One strand of an miRNA is incorporated into
the Argonaute-containing RNA-induced silencing complex (RISC)
and drives the RISC to bind target mRNAs, leading to translational
repression and/or mRNA destabilization. The target mRNAs are
recognized depending on the complementarities between positions 2
to 8 from the 5′ of miRNA (the seed sequence), and an miRNA
Responsive Element (MRE) usually located within the mRNA 3′
untranslated region (3′ UTR) [7]. In mammals the interaction between
miRNAs and MREs generally results in either the block of translation
or the decay of the target mRNAs, which are deadenylated, decapped
and eventually degraded [8]. MiRNAs are abundantly expressed in the
brain, where they have been found to play important roles in the
regulation of brain function and neurological disorders [9-12]. It is
noteworthy that neurons compartmentalize specific mRNAs in
different subcellular compartments, and miRNAs may provide a
unique system to spatially regulate gene expression [13]. The miRNAs
can modulate the expression of multiple mRNA targets, and are
candidates for temporally and spatially regulating several context-
dependent functions in neurons, ranging from early neurogenesis and
neuronal differentiation to dendritic morphogenesis and synaptic
plasticity, from memory and behaviour to cognition in the brain.
Therefore, diverse miRNA repertoires in the brain likely contribute to
the dissimilarities between human and chimpanzee, arguing for a role
of miRNA in brain evolution and function [14,15].

Are miRNAs involved in the post-transcriptional regulation of
associated gene in AD pathogenesis? Could miRNAs have a pivotal
role in intricate pathogenetic networks of AD? Are miRNAs useful
biomarkers of AD? Could miRNAs be considered as potential
molecular target in the AD?

MicroRNAs have been identified as regulators of key genes involved
in Alzheimer’s Disease, including APP [16-18], BACE1 [19-23] and
microtubule associated protein tau, MAPT [24-26]. In all these works
changes of miRNA expression were corrrelated to AD pathology,
without, however, to determine whether the dysregulation of these
microRNAs is cause or consequence of the disease. During the last
years great progresses have been made to profile miRNA expression in
several regions of human AD brains. Several miRNAs were identified
to be upregulated and/or downregulated, but discrepancy in diverse
profiles indicates an emerging need: i) large cohorts of sample ii)
homogeneous tissue sampling protocols iii) complete unbiased and
quantitative measurement of neuronal miRs.

Recently, the importance to explore RNA derived from well-
characterized brain samples of several neurodegenerative diseases by
application of RNA deep sequencing respect to other RNA profiling
methods was evidenced. These studies suggested that respect prior
annotations of miRNAs, the deep sequencing of small RNA species
was less biased and show an unexplored class of small-non coding
RNAs [27].

With the aim to overcome these limiting factors, more recently, the
deregulation of specific miRNAs in the hippocampus of late-onset AD
(LOAD) patients at Braak stages III and IV was shown. Among
deregulated miRNAs, miR-132-3p down-regulation was revealed by
next generation sequencing and confirmed from several independent
laboratories [27-29,32]. The alteration of miR132-3p in Alzheimer’s
disease brain was suggested to be associated to neuronal cells
containing hyperphosphorylated tau, and that a potential mRNA
target of miR132-3p was the transcription factor FOXO1 [29].
Another miRNA, miR-34c was found to be increased in the
hippocampus of both AD patients and AD mouse models, and
identified as key regulator of learning-induced gene expression [30].
Next miR-34c was revealed to target a gene associated to risk factor in
sporadic AD [31] named TREM2, which is reduced in human AD
brains [32].

Use of circulating cell-free microRNAs as biomarkers for AD is of
particular interest. MiRNA profiling from cerebrospinal fluid (CSF)
samples from AD patients, was performed by quantitative reverse
transcriptase polymerase chain reaction (qRT-PCR) [33]. This study
performed on post-mortem samples evidenced a low correlation
between miRNAs altered in CSF and miRNAs expression levels in
brain regions affected in AD [33]. Looking for differential miRNA
expression in either hippocampal tissue or CSF from AD patients and
age-matched nondemented control subjects Muller et al., identified a
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selected group of miRNA differentially regulated in hippocampus
from AD patients. Intestingly, in CSF, expression analysis of this
miRNA group was strongly influenced by the number of blood-
derived cells in the sample [34]. Recently another study on miRNA
expression in CSF from AD patients highilighted hsa-miR-27a-3p as a
candidate biomarker for AD [35]. This work demonstrated that few
miRNA were detectable in CSF ante-mortem respect to miRNA
recovered in CSF post-mortem suggesting that in CSF post-mortem
miRNAs potentially released from degenerating brain tissue were
included. These investigations suggest that the modifications in
miRNA levels can be detected in CSF, but the methodological
approaches for a complete unbiased and quantitative measurement of
CSF miRs are essential [36]. Moreover, an important topic about the
CSF miRNA analysis is to individuate if selected miRNAs were
associated to lipoproteins, exosomes or in complexes with RNA-
binding proteins as Argonaute [37-39].

In conclusion, molecular and cellular neurobiological studies of the
miRNA-mediated gene silencing in Alzheimer's disease, investigations
on microRNAs in cellular and animal models, measurement of
differential miRNAs expression in cerebrospinal fluid and serum as
circulating biomarkers of AD, represent the exploration of a new
frontier of miRNAs biology and the potential development of new
diagnostic tests and genetic therapies for this neurodegenerative
disease.
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