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Abstract

Abstract Based on the quadratic extrapolation method and its generalization, this paper presents an accelerated
two-level multigrid method for speeding up the numerical computation of the stationary probability vector of an
irreducible Markov chain. It shows how to combine these vector extrapolation methods with the two-level multigrid
method on the coarse level in detail. Numerical results on two Markov chain problems are provided to illustrate the
effectiveness of our proposed method in terms of reducing the iteration counts and computing time.
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Introduction

The use of Markov chains is of interest in a wide range of
applications. For example, the web ranking and information retrieval
[1-3], queuing systems [4-7], stochastic automata networks [8,9],
manufacturing systems and inventory control [10] and communication
systems [11,12] and so on. In order to analyze their performance
measures, it is required to find their stationary probability distributions
7 by solving the linear system

70= 0,7 >0, 7e= 1, 1)

where 0= (¢,)€R™ isageneratorand e= (1,1, ..
vector.

1) eR" isa column

For a finite irreducible and aperiodic Markov chain, there exists
a unique stationary probability distribution 7 whose elements are
strictly greater than zero; see, e.g., [13,14]. Hence, for simplicity, we
rewrite (1) as the following homogeneous linear system

Ax= OwithA=0",x=1", 2

where A and x are the transposes of the generator matrix Q and the
stationary probability distribution 7, respectively. Here the coeflicient
matrix A has zero column sum, positive diagonal entries and non-
positive off diagonal entries.

Recently, there are large amounts of works have devoted to solving
the linear system (2). For instance, the matrix splitting iterative
methods [13,15-17] Krylov, subspace methods [18-21] and some
preconditioning techniques [6,9,17] and so on. What is more, based
on the aggregation of Markov states, multigrid methods have been
studied in the literature [22-27]. However, with the size of the Markov
chains becomes large, the cost of multigrid methods is likely to have
an increase. Therefore, it is natural to consider certain strategies to
improve their applications.

In this paper, our concernis the two-level multigrid method. Starting
from its basic framework [28,29], an accelerated two-level multigrid
method is pro-posed for speeding up the numerical computation of
the stationary probability vector of an irreducible Markov chain, by
applying the quadratic extrapola-tion method discussed by Kamvar,
Haveliwala, Manning and Golub [2] and its generalization presented by
Sidi [30] to be the accelerators. It shows how to efficiently combine the
two-level multigrid method with these vector extrapo-lation methods
on the coarse level in detail. The new method is denoted as the two-

level-extrapolation (TLE) method. Note that, the idea of improving
some iterative methods by combining with vector extrapolation
methods is not new [2,30-32]. As a matter of fact, the main algorithmic
contribution of the TLE method is that the computation of the coarse-
level equation 4 x, = 0is improved. Numerical experiments on two
Markov chain problems are used to illustrate the efficiency and stability
of the proposed method.

The rest of this paper is organized as follows. In Section 2, we briefly
review and analyze the two-level multigrid method. In Section 3, the
accelerated two-level multigrid method for Markov chains is proposed.
In Section 4, numerical experiments are provided. Finally, conclusions
are made in Section 5.

Two-level Multigrid Method for Markov Chains

In this section, the two-level multigrid method is briefly introduced
to solve the stationary probability distribution of Markov chains.

For computing numerical solutions of the linear system Ax =5
with b the right-hand vector, certain multigrid methods have been
presented in [24,28,29]. It is easy to find that the linear system (2) is
in fact a special case of 4x = b when b = 0. Without loss of generality,
let P be the full rank prolongation matrix of size 7 X n_, and R be the
restriction operator of size 7.xn, where n_is the size of the coarse-
level matrix A . Here operators P and R are created by an automatic
coarsening process described below. Then, starting from the description
of multigrid methods for the linear system Ax = b [24,28,29], the two-
level multigrid method for Markov chains is proposed in Algorithm 1,
where the matrix A is known in the linear system (2), G is an aggregation
matrix generated by Algorithm 2, and iter denotes the number of cycles
until the one-norm residual || Ax || reaches the prescribed tolerance €.
Note that the approximate solution x only is normalized at the end of
Algorithm 1 rather than in each iteration, since doing like this not only
is advantageous for efficient computer implementation, but also is able
to save the computing cost.
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Algorithm 1: Two-level multigrid method for Markov chains
1. Give an initial guess x and a prescribed accuracy €. Set iter = 0.
2.Dov, times X <= Relax (4, x). % the pre-smoothing.

3. Rebuild aggregation matrix G based on x and A in every cycle.
Obtain R < G and P « diag(x)G.

4. Form the coarse-level operator A, <— RAPdiag(G'x)"
and compute the corresponding coarse-level vector x~ < G"x.

5. Solve the coarse-level equation A4.x, = 0 by an iterative method
with x~_ being the coarse-level initial vector.

6. Coarse-level correction x < diag(Gdiag(G™x)'x_x).
7.Do v, times X < Relax (4, x). % the post-smoothing.

8. Let iter<iter+ 1 and check
Il Ax [l < ¢,then x < x/|| x|}, otherwise go to step 2.

convergence.  If

At steps 2 and 7 of Algorithm 1, the weighted Jacobi method with
the weight @, a variant of Jacobi method, is employed to the pre- and
post-smoothing processes. Let the coefficient matrix A of (2) be split
into

A=D - L - U,

where D is the diagonal part of the matrix A with d, >0Vi, L
and U are the negated strictly lower- and upper-triangular parts of
A, respectively. Then the weighted Jacobi relaxation method can be
written as

x(—(l—a))x+a)D71(L+U)x (3)
with weight @ € (0,1).

At step 3 of Algorithm 1, it is of vital importance how the
aggregation matrix G is built based on x and A, that is, we need to
understand which nodes should be aggregated into a block and which
nodes should be split between their neighbors. Here, in Algorithm 2,
we adopt a strength-based aggregation procedure that proposed by De
Sterck et al. as our aggregation method, since it is able to improve an
algebraically smooth error that varies slowly in a local neighborhood by
scaling the original problem matrix A [24,25].

Algorithm 2: Aggregation based on the strength matrix §
1.SetJ=0.

2. Choose state j, which is an unassigned state and has the largest
value in the current iterate x,, as the seed point of a new aggregate G, .

3. Put all unassigned states i that are strongly influenced by the seed
point j(S; = 1 into the new aggregate G, ..

4.Let J <~ J + L Ifall the states are assigned, stop.
Otherwise go to step 2.

5. Obtain the aggregation matrix G: ifieG, j= 12, J, then
G, = 1,otherwise G, = 0.

Note that the computation of the strength matrix § is
based on the problem matrix scaled by the current iterate, i.e.,
A= Adiag (x,) = (ay), rather than the original coefficient matrix A

(for details see [24]), where diag(-) denotes a diagonal matrix formed
with the current iterate x,. Taking the similar way of defining the
strength matrix S [24], then it follows that

1,if i # kand — ax > O max (- aif),
= i=]
ik
0,otherwise,
where 6 is a strength of connection parameter. In Algorithm 2, the
letter J denotes the number of aggregates, and the aggregation matrix
G has the following form

1 000
1 000
0100
0010
=0 010 “er™. (4)
00 01 .
00 01

From (4), the matrix G has the properties that there exists only
one element Glj = 1 in each row, but each column may have several
elements G; = 1, and the sum of the elements in the j* column denotes
the number of the nodes which are combined into the j* aggregate.

At step 5 of Algorithm 1, it is necessary to discuss the computation
of the coarse-level linear system A4.x, = 0. Clearly solving the coarse-
level equation 4.x, = 0 is easier than computing the original system
Ax = 0, since the size of A_is smaller than that of A. When the size
of A_is small, the direct methods such as Gaussian elimination are
effective. While when the size of A_is large, iterative methods may be
a better choice. Here we employ the Gauss-Seidel method to solve the
coarse-level equation 4 x, = 0, since this method makes use of these
most recently available component approximations. Let the matrix A,
be split into

A(? :D(‘ - LL’ - UC’

where D_is the diagonal part of the matrix 4,,L, and U, are the
negated strictly lower- and upper-triangular parts of A , respectively.
Then the Gauss-Seidel method for the homogeneous systems 4.x, = 0
can be written as

x= (D~ L)'UX (5)

Let Hg = (D.—-L)"'U,, then (5) is equivalent to kal :H(;sxkc'
Hence, the Gauss-Seidel method for 4 x, = 0is found to be identical
to the power method applied to H  [13]. With the initial approximation
x , obtained at step 4 of Algorithm 1, Gauss-Seidel method given
in (5) modifies this approximation such that it becomes closer and
closer to the true solution at each iteration. However, the procedure
has a major disadvantage, that is, it often requires a very long time to
converge to the desired solution. In order to overcome this problem, it
is natural to consider improving the coarse-level computation by some
strategies.

Accelerated Two-level Multigrid Method

In this section, we first give a short introduction to the
generalization of the quadratic extrapolation method proposed by Sidi
[30], and then show how to combine this vector extrapolation method
with the two-level multigrid method on the coarse level for accelerating
the numerical computation of the stationary probability distribution
for Markov chains.
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As far as we know, various kinds of vector extrapolation
methods have been discussed in SIAM Review [33]. For example,
the polynomial-type vector extrapolation methods which include the
minimal polynomial extrapolation (MPE) of Cabay and Jackson [34],
and the epsilon vector extrapolation methods which utilize the scalar
and vector epsilon methods of Wynn [35,36], and the topological
epsilon method of Brezinski [37].

It should be noted that the starting point of the vector extrapolation
algo-rithms is to accelerate the convergence of the sequences {x;}
generated from such a fixed-point iterative method of the form

X, =F(x,),j= 0,1, F:R'=—R", (6)

where x, is an initial vector. In recent years, applications of the
vector extrap-olation methods to compute the stationary probability
distribution of Markov chains have been reported in [2,30-32].
Numerical simulations have also illus-trated that the polynomial-
type methods are in general more economic than the epsilon vector
extrapolation methods with respect to the computing time and storage
requirements. Therefore, in this paper, we apply the polynomial-type
vector extrapolation methods, i.e., the quadratic extrapolation method
and its generalization, to be our accelerators.

In fact, using vector extrapolation methods as the accelerators is
com-mon. For instance, Kamvar et al. have considered the quadratic
extrapola-tion method to speed up the computation of the dominant
eigenvector of the PageRank problem [2]. Based on Ritz values, Wu
and Wei discussed its close connection with the Arnoldis method
[32]. Moreover, Sidi reported that it was closely related to the MPE
of Cabay and Jackson [34] and thus proposed a generalization of the
quadratic extrapolation (GQE) method along with the implementation
of MPE [30]. According to [30], the algorithm of the GQE is provided
in Algorithm 3.

Algorithm 3: The generalization of quadratic extrapolation
method

1. Input the vectors Xy, X;,"""5 X, ;-

2. Compute
Compute the QR-factorization of U,, namely, U, = Q,R

Obtain R,_ =R, (1 :k,1 :k),0,_, =0, (1 :k).

3. Solve the linear system R, \d = —Q,(Tfluk,d = [d,, d,,", d,H]T.

4. Set d,=1 and c=lep aynel by
c. :Zk:dj,izo,l,...,k.

i

U, =X, =X, i= 0,1, k, setU, = [uy, u,,"+, u,].

k*

compute

=i
k

5. Compute %, = (Zcf)xo + 0, (R0).
i=0

It is clear that the case k = 2 corresponds to the quadratic
extrapolation method proposed in [2]. One feature of Algorithm 3 is

that there exists a QR-factorization at step 2 for U, = O,R,, where
0, e R™** is unitary, and Q, € R jsan upper triangular matrix
with positive diagonal elements. Precisely, they have

nx(k+1
Qk = (qm 9, " qk)ER { )9QA-T Qk :1(k+|)x(k+|)-

T

0 7o

01

R, = . .|, r>0Vi.

To develop an efficient implementation for the QR-factorization,
we apply the modified Gram-Schmidt process (MGS) to vectors
Uy, Uy, Uy [30,38]. The MGS algorithm is given as follows.

MGS algorithm
Step 1. Compute 7,, = (i, 1,)"”, and set g, = u, / 7y;

O _y -
J j,

Step 2. For j=1 :k,setu

+1)

Step 3. For i= 1 : j, compute ; = (g, u',”) and u: uﬁ.‘) — 14,

Step 4. Compute r; = (', u'”)?and ¢, =u\" / r,.

From Algorithm 3, we observe that the updated iterate X, 4
is given only in terms of the previous iterates X, j= 0,1+, k+ 1,
and no other input is required. For example, when k = 2, there are
only four vectors Xx,, X, X,, x; are needed to storage and as the input
vectors. Furthermore, according to their analytic properties discussed
in [2,30], these vector extrapolation methods are naturally considered
as the effective accelerators in order to improve the convergence of the
vector sequence {x}.In particular, given the vector Xy, X, """, X, ,
and the QR-factorization in the MGS algorithm, the opera-tion
counts of Algorithms 3 consist of 1/ 2(k2 + 5k +2) vector additions,
1/2(/(2 + 5k) scalar-vector multiplications and 1/2(k2 + 3k + 2) inner
products [30].

Motivated by the study of [2,24,30,32]. Since using iterative
methods like Gauss-Seidel method given in (5) to calculate the coarse-
level linear system 4.X, = 0 may require a very long time to converge
to the desired solution. Our main contribution is to apply the vector
extrapolation method (Algorithm 3) to modify the two-level multigrid
method (Algorithm 1) on the coarse level, such that the convergence
of calculating the stationary probability distribution of Markov chains
becomes faster. The proposed method is denoted as the two-level-
extrapolation (TLE) method and given in Algorithm 4.

Algorithm 4: Accelerated two-level multigrid method by GQE

1. Obtain the coarse-level matrix 4, and vector . by the steps 1-4
of Algorithm 1.

2. Compute the coarse-level equation 4.x, = 0 by Algorithm 3.
(a). Set x, = x. as the coarse-level initial vector,
(b). Obtain the input vectors }0, ;1,' -, Xest by (5),

(c). Compute the coarse-level approximate solution X, by
Algorithm 3.

3. Obtain the approximate solution x of (2) by the steps 6-8 of
Algorithm 1 and check convergence.

Comparing Algorithm 1 with Algorithm 4, the main difference
between our proposed method and the standard two-level multigrid
method is that, in the process of computing the coarse-level equation
A.x, = 0,the former takes advantage of Algorithm 3 to obtain the
approximate coarse-level solution x, while the latter only exploits the
Gauss-Seidel method to get the approximate coarse-level solution x,.
Let n_be the size of the coarse-level operator A . Assume m to be the
number of using Gauss-Seidel method to solve 4,x, = 0 in Algorithm
1. Then in each cycle of Algorithm 1, the dominant cost spent in
calculating the coarse-level equation 4 x, = 0 is O(mn’,). However,
as analyzed above, given the input vectors and QR-factorization,

the total cost of Algorithm 3 is almost O(k’n,) plus O((k+ 1)n*))
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[30]. Hence, in each cycle of Algorithm 4, the dominant cost spent in
solving the coarse-level equation Ax,= 0Ois O((k+1)nzc) because
of n, > k.z Generally speaking, since the size of k is often taken to be
smaller than that of m in numerical experiments, and thus it follows
O((k+ 1)n*,)<O(mn*,), which indicates that the total cost of the TLE
method should be less than that of the TL method. For illustrating this
point, numerical experiments are given in the next section.

Numerical Experiments

In this section, we report numerical results obtained by using
Matlab 7.0.1 implementation on a Windows XP with 2.93GHz 64-bit
processor and 2GB memory. The main goal is to examine the accelerated
two-level multigrid method and show its efficiency in improving
the numerical solution of the stationary probability distribution for
Markov chains. In Algorithm 1, let the number of using Gauss-Seidel
method to solve the coarse-level equation 4.X, = Obe m = 10 and m
= 20, then for simplicity, we denote the standard two-level multigrid
method as TL(10) and TL(20), respectively. In Algorithm 3, we set the
letter k as k= 2,3,4,5,6,7, and then the corresponding methods in
Algorithm 4 are denoted as TLE(2), TLE(3), TLE(4), TLE(5), TLE(6)
and TLE(7), respectively. Here two Markov chain problems studied in
[9,25] are considered in our experiments.

Now, some special sets of parameters are supplied in this
paragraph from [24,25]. As mentioned in the previous sections, the
weighted Jacobi method has been used as the pre- and post-smoothing
approaches in Algorithm 1. Let V,=V, = land set the relaxation
parameter @= 0.7 in our experiments since this value works well
for all tests that we have considered, even though it is likely to be
problem-dependent. The strength of connection parameter is chosen
as @ = 0.8 and the initial guess is generated by randomly sampling the
uniform (0, 1) distribution and normalized to one in the one norm.
All the iterations are terminated when || Ax||<e= 10 with x the
current approximate solution, or when the computing time (referred
to as CPU) exceeds 600 seconds. Finally, numerical results in terms
of iteration counts (referred as to IT) and CPU are reported by means
of tables, while convergence histories are shown in figures with the
number of iterations on the horizontal axis versus Relres (defined as
log,, of the updated relative 1-norms, i.e.,, log,, || 4x ||, ) on the vertical axis.

Example one: Uniform 2D lattice

This test problem is a 2D lattice with uniform weights [25]. It is
similar to an isotropic elliptic PDE problem. Here we let the 2D lattice
be square and use & to denote the number of nodes in every row or
column, e.g., h= 20,40,60, then the size of rows of the coeflicient
matrix A in the linear system (2) is n = K.

Table 1 has provided the IT and CPU of the TL and TLE methods
for Example one. By making comparisons, we observe that, the IT and
CPU of our accelerated two-level multigrid method are less than those
of the stan-dard two-level multigrid method. Particularly, the TLE(7)
has given the best results. Taking n=400 as an example, the iteration
counts of the TL(10) and TL(20) are reduced about 91% and 87% by
comparing with that of the TLE(7) respectively (Figure 1).

For obtaining an intuitive comparison, Figure 1 has plotted the
convergence histories of the TL(10), TL(20), TLE(3), TLE(5) and
TLE(7) methods for Example one with #=400. It is not difficult to find
that the accelerated two-level multigrid method has faster convergence.

Example two: Two-queue over flow networks

This test problem is the two-queue overflow networks with the

Page 4 of 6

n 400 1600 3600

ITCPU IT CPU IT CPU IT CPU
TL(10) 35 6.6144 97 115.8304 115 545.7664
TL(20) 23 3.6280 54 67.9160 66 332.7826
TLE(2) 7 0.9480 7 8.6851 7 35.2121
TLE(3) 5 0.6528 5 6.1523 5  26.2183
TLE(4) 4 05580 4 4.9210 4 219744
TLE(5) 4 05315 4 48115 4 20.9744
TLE®) 3 0.3956 3 3.6160 3 16.8174
TLE(7) 3 0.3718 3  3.5030 3 15.9021

Table 1: IT and CPU of the TL and TLE methods for Example one.

Figure 1: The convergence histories of the TL(10), TL(20), TLE(3), TLE(5)
and TLE(7) methods for Example one with n=400.

n 256 1024 2048
IT CPU IT CPU IT CPU
TL(10) 36 3.7404 103 60.7502 218 245.0183
TL(20) 27 2.1347 62 38.4012 188 201.2844

TLE(2) 6 0.4518 6 3.6774 7 7.4840
TLE(3) 5 0.3851 5 3.0647 5 5.3628
TLE(4) 4 0.3045 4 24517 4 4.2915
TLE(5) 4 0.3002 4 24083 4 4.2887
TLE(6) 3 0.1854 3 1.8926 3 3.2419
TLE(7) 3 0.1786 3 1.8712 3 3.2005

Table 2: IT and CPU of the TL and TLE methods for Example two.

customer arrival rate and service rate of the servers being A and
u,(i=1,2), respectively. Suppose the number of serves is s, and
the waiting space is /,—s,—1 (i= 1,2). Then the size of rows of the
matrix A in the linear system (2) is given by n=1/1l,. Here we let (I,
L) = (16, 16), (32, 32) and (64, 32) in the test. The queueing discipline
is First-come-first-served. Specifically, we allow the overflow of
customers to occur from queue 2 to queue 1 when queue 2 is full and
there is still waiting space in queue 1. The description of the two-queue
overflow networks and the form of its generator matrix have been
presented in a few papers; e.g., [9]. For simplicity, in this test, we set

si=8,=LA=4=landy =u =1

Numerical results of the TL and TLE methods for this test problem
have been given in Table 2. Again, we see that the IT and CPU of
our accelerated two-level multigrid method are less than those of the
standard two-level multigrid method. Moreover, the higher order
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Figure 2: The convergence histories of the TL(10), TL(20), TLE(3), TLE(5)
and TLE(7) methods for Example two with n=256.

vector extrapolation methods are used, the less iteration counts and
computing time are needed. In particular, the TLE(7) has supplied the
best results. For instance, when n=256, the TLE(7) only needs about
8% —11% of the iteration steps and computing time of the TL method.
Therefore, we can say that our proposed methods can efficiently speed
up the convergence of the standard two-level multigrid method.

In order to further compare their numerical behavior from an
intuitive point, Figure 2 has described the convergence histories of
the TL(10), TL(20),TLE(3), TLE(5) and TLE(7) methods for Example
two with n=256. These curves illustrate that the accelerated two-level
multigrid method outperforms the standard two-level multigrid
method once again (Figure 2).

Conclusions

In this paper, an accelerated two-level multigrid method by the use
of the quadratic extrapolation method and its generalization has been
proposed for improving the numerical calculation of the stationary
probability distribution of an irreducible Markov chain. The main
algorithm has been given in Algorithm 4. It has shown how to combine
Algorithm 1 with Algorithm 3 on the coarse level in detail. Numerical
results in Tables 1 and 2 have indicated that the TLE method is superior
to the TL method in terms of decreasing the IT and CPU. On the other
hand, Figures 1 and 2 have illustrated the fast convergence of the
accelerated two-level multigrid method.
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