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Introduction
In this section we give the detailed outlines of the algorithm of 

indefinite quadratic programming problems. It references to the 
numbers of some equations and conditions appeared in the following 
equations [1-8]:
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the algorithm assumes the availability of an initial basic feasible point 
[9-15]. The steps are:

1. Given (1) (1) (1)
1 2, ,x vλ  and η, set K=1.

2. Solve (1) for q. 
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 otherwise remove q from η [21-28]; update the basic variables using 
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update the basic variables using 
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Set K=K+1 and go to (b).

Otherwise update the basic variables using 1
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Practical Application of the Algorithm
The algorithm presented above represents a general outline of a 

method for solving indefinite quadratic programming problems rather 
than an exact definition of a computer implementation. In this section 
we discuss the computational work performed by the algorithm, and 
try to achieve efficiency and stability as possible as we can. In doing so 
we follow, with slight modifications, the work of Gill and Murray which 
has been applied to active set methods since mid-seventies until now 
[7-10]. The slight modifications are made to cope with the new forms of 
the matrices used in the method when G is indefinite. In the case when 
G is positive (semi definite) the active set methods are considered to be 
equivalent, [20], pointed out. There he gave a detailed description of 
that equivalence. He also re-mentioned this equivalence [6]. The major 
computational work of the algorithm is in the solution of 
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Abstract
In this paper, we give in section (1) compact description of the algorithm for solving general quadratic programming 

problems (that is, obtaining a local minimum of a quadratic function subject to inequality constraints) is presented. In 
section (2), we give practical application of the algorithm, we also discuss the computation work and performing by 
the algorithm and try to achieve efficiency and stability as possible as we can. In section (3), we show how to update 
the QR-factors of A1

(K), when the tableau is complementary ,we give updating to the LDLT-Factors of ( )K
AG . In section 

(4) we are not going to describe a fully detailed method of obtaining an initial feasible point, since linear programming 
literature is full of such techniques. 
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( ) 1
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−
= −

We do not solve them directly; instead, we make use of the special 
structure of the matrices involved. We use the matrices H, T and U 
defined in eqn. (5). Thus, accordingly the solution in eqn. (3) is given by:

( )K
x qd T e= −  					                   (6)

( )K
ed U eλ =  					                   (7)
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1 q r
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H, U, T define the inverse of the upper left partition of the basis 
matrix when the tableau is complementary. This calls for making them 
available at every complementary tableau. In other words they are to be 
updated from a complementary tableau to another [12].

Referring to ( ) ( )T TZ GZ y Z g GSb= − + , H, T and U are given by: 
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Where S(K) and Z(K) satisfy
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1

TK KS A I=  					                   (13)

and ( ) ( )
1 0

TK KZ A =  				                (14)

The choice of S(K) and Z(K) to satisfy in eqns. (13) and (14), 
respectively is generally open. Here we take the choice given in 
S=Q1R

-T, Z=Q2 which is, according to K(ZTGZ)≤K(G), is advantageous 
as far as stability is concerned. For the sake of making this section self-
contained we show how S(K) and Z(K) are obtained in away suitable to 
this section. Let:
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represent the QR factorization of ( )
1

KA , where ( )
1

KA is n×Lx. Thus Q(K) 
is n×n and R(K) is an LK×LK upper triangular matrix partition Q(K) into
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KQ  is Lx×n. and ( )
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KQ  is ( )Kn L n− × . Thus, in 

eqn. (15) we have:
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and ( ) ( )
2 1 0K KQ A =  				                 (17)

so in eqns. (16) and (17) we define ( )KS  and ( )KZ  by:
( ) ( ) ( )
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and ( ) ( )
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Where I the identity matrix is whose columns are reversed. Thus 
we conclude by saying that the computation is focused on using the 
QR factorization of ( )

1
KA , (when the kth iteration is complementary). 

So updating these factors is required at each iteration when the tableau 
is complementary [25]. 

Updating the QR-Factors of 1
( )KA

In this section we show how to update the QR-factors of ( )
1

KA , 
when the tableau is complementary, also we give updating to the LDLT-
Factors of ( )K

AG .

Following the stream of our discussions, two cases are to be 
considered separately. The case when the (k+1)th iteration results in 
a complementary tableau, and the case when complementarity is 
restored at the (k+r+1)th iteration after r successive non-complementary 
tableaux. In the first case the factors of A1

(k) are updated to give those of 
( 1)
1

KA + , and this is the case when a column, qa  say, is deleted from A1
(k). 

In the second case the factors of A1
(k) are used to give those of A1

(k+r+1), 
and this is the case when one column, qa  say, is deleted from A1

(k) 
and then r other columns are added to A1

(k). We follow the same steps 
carried [9], with the appropriate modification in the second case. In the 
first case, let A1

(k) be the n×(Lk-1) matrix obtained by deleting the qth  
column, qa , from A1

(k). Suppose the QR-factorization of A12
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by: 
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where R11 is (q-1)×(q-1) upper triangular, R12 is (q-1)×(Lk-q), R22 is (Lk-
q)×(Lk-q) upper triangular, α  is a (q-L) vector, β is an (LK-q) vector 
and γ is a scalar. Since ( 1) ( ) ( ) ( ) ( 1)
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where R' is (Lk-q)×(Lk-q) upper triangular. In this case \
1Q  is an (Lk-

q+1)×(Lk-q+1) orthogonal matrix. Thus if \ \
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Thus, only the rows from the qth to the Lk
th of Q(K) are altered in 

obtaining Q(K+1), so if Q(K+1) is partitioned into 
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then ( 1)
2

KQ + , in particular, takes the form:
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is complementary). Otherwise the third iteration will definitely restore 
complementarity at another vertex leaving (3) 0AG = . In the former case 
the dimension of (2)

AG  is 1. In general the dimension of ( )K
AG  keeps 

on increasing when constraints are deleted, and updating the factors 
is straight forward as will be shown. On the other hand the dimension 
of ( )K

AG  keeps on decreasing when constraints are added to the active 
set, and in this case we are faced with re-factorizing the factors. We 
return to the case when the (k+1)th iteration is complementary. Here we 
are almost copying the work of in eqn. (9). In this case, as in eqn. (25) 

shows ( 1)
2 ( )

2

T
K

K

q
G

Q
+  
=  
 

, and using in eqn. (19) we have :

 ( 1) ( 1) ( )
2

TK K KZ I G Z q+ +  = =  
  			                (30)

the matrix ( 1)K
AG +  is given by:

( ) ( )
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A TT K

G Z Gq
G Z GZ

q GZ q Gq
+ + +
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	               (31)

It can be shown that when a symmetric matrix is augmented by a 
single row and a column, the lower-triangular factor is augmented by 
a single row. Define:
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If we substitute in eqn. (31) and in eqn.(32) into the identity:
( 1) ( 1) ( 1) ( 1)TK K K K
AG L D L+ + + += , we obtain L  and dn-LK+1 as the 

solution of the equations
( ) ( ) ( )1K K K TL D Z Gq=  				                (33)

and ( )
1K

T T K
n Ld q Gq L D L− + = −  			               (34)

The numerical stability of this scheme is based on the fact that, if 
( 1)K
AG +  is positive definite, the element 1Kn Ld − +  must be positive. In this 

event in eqn. (34) ensures that arbitrary growth in magnitude cannot 
occur in the elements of L .

Before ending this section we show that when the kth iteration and 
the (k+1)th iteration are complementary then ( 1)K

AG +  must be positive 
definite. 

Let the tableau be complementary at the kth iteration. Let ( )
1

KA  be 
the matrix whose columns correspond to the active constraints, and 

( ) 0K
qλ < . The increase of vq changes f according to 

( ) 20.5K
q q qq qf f v u vλ= + −  			                 (35)

( )T
qq q qu e U e=
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and x  changes according to 
( )K

qqx x T e v= +  				                 (37)

For the next tableau (i.e., the (k+1)th)) to be complementary uqq 
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 of vq must not 
violate feasibility. 

Thus, using in eqn. (35), we have 
2

2 0qq
q

d f u
dv
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the fact that f possesses a positive curvature along the direction qT e . 
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Note also that the first q-1 rows of Q1
(k) are not changed. This fact 

might be helpful as far as efficiency is concerned if we want to think 
of another alternative of choosing q in eqn. (1), such an alternative is:

Q=max{i=λi<0,1≤i≤Lk}		   		               (23)

So that increase the number of rows of Q1
(k) and R(K) which 

are unaltered in iteration (K+1), which in turns reduces the effort, 
especially when Lk is relatively large. We now consider the second 
case when complementarity is restored at the (k+r+1)th iteration. Let 

'

1,..,pr pW a a− = −  . Let ( 1)
1

KA +  be obtained from A1
(k) by removing qa . 

Thus 
( 1) ( 1) ':K r KA A W+ + + =    		   		               (24)

Pre-multiplying both sides in eqn. (24) by Q(k+1) (defined in eqn. 
(21)) we get
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KW Q W+= and R(k+1) is defined in eqn. (20)
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Define the QR-factorization of '
2W . Here ''

2Q  is (h-Lk+1)×(n-
Lk+1) and orthogonal, and '

2R  is r×r upper triangular. If 

\ \
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Thus we obtain the QR-factorization of A(k+r+1) with
( 1) '' ( 1) '' ' ( )K r K KQ Q Q Q Q Q+ + += =  			                (28)

And 
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K
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+
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 			                 (29)

Updating The LDLT-Factors of ( )K
AG

The factors ( ) ( ) ( )TK K KL D L  of ( )K
AG  are updated at each iteration when 

the tableau is complementary. Near the end of this section we show 
that (1)

AG  is always positive definite (on the assumption that ( )K
AG  is 

positive semi-definite). Updating these factors is very stable when ( )K
AG  

is positive definite as we shall see. This fact is counted as one of the 
good numerical features of the method. We consider the case when 
the (k+1)th iteration results in a complementary tableau. Unfortunately, 
in the other case when complementarity is restored at the (k+r+1)th 
iteration, we are unable till now to explore a way of using the factors 
of ( )K

AG  in obtaining those of ( 1)K r
AG + + . However  n-Lk-r, the dimension 

of ( 1)K r
AG + + , decreases with r, in which case the effort of re-factorizing 

( 1)K r
AG + +  might not be so much, especially when n-Lk is itself small. 

This calls for choosing the starting L1 so that n-L1 is small. In the case 
when the number of constraints is greater than n, L1 is chosen to be 
equal to n; that is the initial guess (1)x  is a vertex. With this choice 

(1) 0AG = , and in the second iteration we might expect a constraint to be 
deleted from the active set (which is the case when the second iteration 
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Now let ( 1)
1

KA +  be obtained from ( )
1

KA  by removing qa  and let Z(k+1) be 
defined so that ( 1) ( 1) 0

TK KZ A+ + = .

Pre-multiply both sides of in eqn. (37) by ( 1)TKA +  to get:
( 1) 0

TK
qA T e+ =  					                    (38)

showing that qT e  lies in the space spanned by the columns of Z(k+1), so

 ( 1)K
qT e Z h+=  					                  (39)

for some (n-Lk+1) vector h . Since along qT e  at ( 1)K
qv + , 0

q

df
dv

=  and 
2

2 0
q

d f
dv

> , then f is minimum along qT e  at ( 1)Kx + , where 

( 1) ( ) ( 1)K K K
q qx x T e v+ += + 				                (40) 

We therefore conclude, in the active set methods sense, that the 
direction ( 1) ( 1)K K

q qT e vδ + +=  solves the equality problem:

minimize ( )( )0.5 T T KG Gx gδ δ δ+ +

Subject to ( 1) 0
TKA δ+ =  				                  (41)

Using (39),
( 1)( 1) ( 1) ( 1) ( 1)KK K K K
q AZ h v Zδ δ

++ + + += = , thus )1( +Kaδ  solves 
the problem

minimize ( ) ( )( )( 1) ( 1)0.5
TT T KK K

A A AZ GZ Gx gδ δ δ+ + + + ,

from which we conclude that ( 1) ( 1) ( 1)TK K K
AG Z GZ+ + +=  is positive definite.

Finding an Initial Feasible Point
In this section we are not going to describe a fully detailed method of 

obtaining an initial feasible point, since linear programming literature 
is full of such techniques. The method of finding a feasible point has 
been resolved in linear programming by a technique known as phase 
1 simplex [27]. The basis of the technique is to define an artificial 
objective function, namely: ( )

( )
( ) T

j j
j v x

F x a x b
∈

= − −∑ , where ( )v x  is the 

set of indices of constraints which are violated at the point x , and to 
minimize this function with respect to x , subject to the constraints 

0T
jja x b− ≥ , ( )j v x∉ . The function ( )F x  is linear and is known as 

the sum of infeasibilities. If a feasible point exists the solution *x  of 
the artificial problem is such that *( ) 0F x = . In the case when m exceeds 
n, a non-feasible vertex is available as an initial feasible point to phase 
1 and the simplex method is applied to minimize ( )F x . This process 
will ultimately lead to a feasible vertex [28]. Direct application of this 
method to finding a feasible point in the case when m is less than n is 
not feasible since, although a feasible point may exist a feasible vertex 
will not. Under these circumstances artificial vertices can be defined 
by adding simple bounds to the variables, but this could lead to either 
a poor initial point, since some of these artificial constraints must be 
active, or exclusion of the feasible region. A way out of this dilemma 
is described [6-9] a number of methods including the above one have 
been described. Gill and Murray is advantageous in that it makes 
available the QR-factorization of the initial matrix of active constraints 
which is then directly used in our algorithm. 
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