
Volume 7 • Issue 1 • 1000380J Appl Computat Math, an open access journal
ISSN: 2168-9679 

Open AccessResearch Article

Journal of 
Applied & Computational Mathematics 

Jour
na

l o
f A

pp
lie

d & Computational M
athem

atics

ISSN: 2168-9679

Siddieg, J Appl Computat Math 2018, 7:1
DOI: 10.4172/2168-9679.1000380

Introduction
In this section we give the detailed outlines of the algorithm of 

indefinite quadratic programming problems. It references to the 
numbers of some equations and conditions appeared in the following 
equations [1-8]:

( )min K
ii η
λ

∈
					                   (1) 

and 
( )( )

1
( )( )

1
( ) ( )
2

0 0
0 0
0 0

KK
x
KK T

q
K T K

v

dG A
A d e
A I d

λ

  −      − =        −      

		              (2)

the algorithm assumes the availability of an initial basic feasible point 
[9-15]. The steps are:

1. Given (1) (1) (1)
1 2, ,x vλ  and η, set K=1.

2. Solve (1) for q. 

3. If ( ) 0K
qλ ≥  terminate with 

* ( )Kx x=  otherwise solve 
( )

( )min
K

p
Kp

p

v
dvη∉

 
( ) 0k
pdv >  for P1.

4. If If ( ) 0K
qdλ <  and 

( ) ( )
1

( ) ( )
1

K K
q

K K
q p

vp
d dv
λ
λ

≤  is satisfied remove q 

from η; update the basic variables using [16-20]
( )

( 1)
( )

K
qK

q K
q

v
d
λ
λ

+ = to :

( )( 1) ( ) ( ) ( 1) { }K K K K
P P P qv v dv v P U qη+ += − ∉ ; set K=K+1 and go to (b)

 otherwise remove q from η [21-28]; update the basic variables using 
( )

( 1) 1
( )

1

K
K P

q K
P

vv
dv

+ =  { }( )( 1) ( ) ( ) ( 1)K K K K
P P vP qv v d v P U qη+ += − ∉  

5. Set r=1 and k k=k, set KK+r and add Pr to η .

6. Solve 
( )

0

( )

( )min
k r p

p

K r
P

K rp
vqdv

v
dη

σ

σ
+

<

+

+∉  for Pr+1 

7. If 1

1

( )( )
( )

( ) ( )0 r

q

q r

K rK r
pqK r

K r K r
vp

v
d and

d dλ
λ

λ
σ

σ σ
+

+

++
+

+ +< ≤ is satisfied, 

update the basic variables using 
( )

( 1)
( )r

K r
qK r

P K r
qd

λ
λ

λ

+
+ +

+=  to 
( 1) ( ) ( ) ( 1) ,

p r

K r K r K r K r
P P v Pv v d Pλ η+ + + + + += − ∉ .

Set K=K+1 and go to (b).

Otherwise update the basic variables using 1

1

( )
( 1)

( )
r

r

rpr

K r
PK r

P K r

v
dv

λ +

+

+
+ +

+=  to 
( 1) ( ) ( ) ( 1)

Pr
K r K r k r K r

P P vPv v d Pλ η+ + + + + += − ∉ ; set r=r+1 and go to (e)

Practical Application of the Algorithm
The algorithm presented above represents a general outline of a 

method for solving indefinite quadratic programming problems rather 
than an exact definition of a computer implementation. In this section 
we discuss the computational work performed by the algorithm, and 
try to achieve efficiency and stability as possible as we can. In doing so 
we follow, with slight modifications, the work of Gill and Murray which 
has been applied to active set methods since mid-seventies until now 
[7-10]. The slight modifications are made to cope with the new forms of 
the matrices used in the method when G is indefinite. In the case when 
G is positive (semi definite) the active set methods are considered to be 
equivalent, [20], pointed out. There he gave a detailed description of 
that equivalence. He also re-mentioned this equivalence [6]. The major 
computational work of the algorithm is in the solution of 

( )( )
1

( )( )
1
( ) ( )
2

0 0
0 0
0 0

KK
x
KK T

q
K T K

v

dG A
A d e
A I d

λ

  −      − =        −      

 		              (3)

and 

( )
( )
1 Pr

( )( )
1

( )( )

( )
Pr

( ) ( )
2

0 0
0 0 0 0
0 0 0 0 0

00 0 0 0
00 0 0

T

K r
K

x
K rK T

q
T K rK r

B w
T T T T K r

vq
K r K r

vp

dG A W a
dA e

WM d
a d

A I d

λ

+

+

++

+

+ +

  − − −      −     −  = =      −       −       

    (4)

( ) 1
( ) ( ) ( ) ( )T TK K K KH Z Z GZ Z

−
=

 ( ) 1
( ) ( ) ( ) ( ) ( ) ( )T TK K K K K KT S Z Z GZ Z GS

−
= −  		               (5)

*Corresponding author: Siddieg AMAEl, Department of Mathematics, Prince 
Sattam Bin Abdulaziz University, Alkharj Public Library, Sa'ad Ibn Mu'adh, Al Kharj 
Saudi Arabia, Tel: +966 11 588 8888; E-mail: wigdan@hotmail.com

Received December 12, 2017; Accepted January 11, 2018; Published January 
24, 2018

Citation: Siddieg AMAEl (2018) An Algorithm for Solving Indefinite Quadratic 
Programming Problems. J Appl Computat Math 7: 380. doi: 10.4172/2168-
9679.1000380

Copyright: © 2018 Siddieg AMAEl. This is an open-access article distributed under 
the terms of the Creative Commons Attribution License, which permits unrestricted 
use, distribution, and reproduction in any medium, provided the original author and 
source are credited.

An Algorithm for Solving Indefinite Quadratic Programming Problems
Siddieg AMAEl
Department of Mathematics, Prince Sattam Bin Abdulaziz University, Alkharj Public Library, Sa'ad Ibn Mu'adh, Al Kharj Saudi Arabia

Abstract
In this paper, we give in section (1) compact description of the algorithm for solving general quadratic programming 

problems (that is, obtaining a local minimum of a quadratic function subject to inequality constraints) is presented. In 
section (2), we give practical application of the algorithm, we also discuss the computation work and performing by 
the algorithm and try to achieve efficiency and stability as possible as we can. In section (3), we show how to update 
the QR-factors of A1

(K), when the tableau is complementary ,we give updating to the LDLT-Factors of ( )K
AG . In section 

(4) we are not going to describe a fully detailed method of obtaining an initial feasible point, since linear programming 
literature is full of such techniques. 



Citation: Siddieg AMAEl (2018) An Algorithm for Solving Indefinite Quadratic Programming Problems. J Appl Computat Math 7: 380. doi: 10.4172/2168-
9679.1000380

Page 2 of 4

Volume 7 • Issue 1 • 1000380J Appl Computat Math, an open access journal
ISSN: 2168-9679 

( ) 1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T T T TK K K K K K K KU S GZ Z GZ Z GS S GS

−
= −

We do not solve them directly; instead, we make use of the special 
structure of the matrices involved. We use the matrices H, T and U 
defined in eqn. (5). Thus, accordingly the solution in eqn. (3) is given by:

( )K
x qd T e= −  					                   (6)

( )K
ed U eλ =  					                   (7)

( ) ( ) ( )
2

TK K K
vd A dx=  				                 (8)

( ) ( ) ( )
q r

K r K r K r
vx W q Pd HW d T e d H a+ + += + −  		                    (9)

and , ( ) ( ) ( )
1 q r

K r K r K rT T
W q v PT W d U e d T aλ + + += − − +  	                (10)

( ) ( )( )
2

TK r K rK r
v xd A d+ ++=  				                  (11)

H, U, T define the inverse of the upper left partition of the basis 
matrix when the tableau is complementary. This calls for making them 
available at every complementary tableau. In other words they are to be 
updated from a complementary tableau to another [12].

Referring to ( ) ( )T TZ GZ y Z g GSb= − + , H, T and U are given by: 

( ) 1
( ) ( ) ( ) ( )T TK K K KH Z Z GZ Z

−
=

( ) 1
( ) ( ) ( ) ( ) ( ) ( )T TK K K K K KT S Z Z GZ Z GS

−
= −  		              (12)

( ) 1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T T T TK K K K K K K KU S GZ Z GZ Z GS S GS

−
= −

Where S(K) and Z(K) satisfy

( ) ( )
1

TK KS A I=  					                   (13)

and ( ) ( )
1 0

TK KZ A =  				                (14)

The choice of S(K) and Z(K) to satisfy in eqns. (13) and (14), 
respectively is generally open. Here we take the choice given in 
S=Q1R

-T, Z=Q2 which is, according to K(ZTGZ)≤K(G), is advantageous 
as far as stability is concerned. For the sake of making this section self-
contained we show how S(K) and Z(K) are obtained in away suitable to 
this section. Let:

( )
( ) ( )

1 0

k
K K R

Q A
 

=  
 

 				                 (15)

represent the QR factorization of ( )
1

KA , where ( )
1

KA is n×Lx. Thus Q(K) 
is n×n and R(K) is an LK×LK upper triangular matrix partition Q(K) into

( )
( ) 1

( )
2

K
K

K

Q
Q

Q
 

=  
 

, where ( )
1

KQ  is Lx×n. and ( )
2

KQ  is ( )Kn L n− × . Thus, in 

eqn. (15) we have:
( ) ( ) ( )
1 1

K K KQ A R=  				               (16)

and ( ) ( )
2 1 0K KQ A =  				                 (17)

so in eqns. (16) and (17) we define ( )KS  and ( )KZ  by:
( ) ( ) ( )

1

T TK K KS Q R=  				                 (18)

and ( ) ( )
2

TK kZ IQ=  		   		                (19)

Where I the identity matrix is whose columns are reversed. Thus 
we conclude by saying that the computation is focused on using the 
QR factorization of ( )

1
KA , (when the kth iteration is complementary). 

So updating these factors is required at each iteration when the tableau 
is complementary [25]. 

Updating the QR-Factors of 1
( )KA

In this section we show how to update the QR-factors of ( )
1

KA , 
when the tableau is complementary, also we give updating to the LDLT-
Factors of ( )K

AG .

Following the stream of our discussions, two cases are to be 
considered separately. The case when the (k+1)th iteration results in 
a complementary tableau, and the case when complementarity is 
restored at the (k+r+1)th iteration after r successive non-complementary 
tableaux. In the first case the factors of A1

(k) are updated to give those of 
( 1)
1

KA + , and this is the case when a column, qa  say, is deleted from A1
(k). 

In the second case the factors of A1
(k) are used to give those of A1

(k+r+1), 
and this is the case when one column, qa  say, is deleted from A1

(k) 
and then r other columns are added to A1

(k). We follow the same steps 
carried [9], with the appropriate modification in the second case. In the 
first case, let A1

(k) be the n×(Lk-1) matrix obtained by deleting the qth  
column, qa , from A1

(k). Suppose the QR-factorization of A12
(k) is given 

by: 
( )

( ) ( )
1 0

K
K K R

Q A
 

=  
 

, partition A1
(k) into: ( ) ( ) ( )

1 11 12
K K K

qA A a A =  

Where ( )
11

KA  is n×(q-1) and ( )
12

KA  is n×(LK-q). Let R(K) have the form

11 12

( )

22

0

0 0

T TK

R R

R

R

α

γ β

 
 

=  
 
 

where R11 is (q-1)×(q-1) upper triangular, R12 is (q-1)×(Lk-q), R22 is (Lk-
q)×(Lk-q) upper triangular, α  is a (q-L) vector, β is an (LK-q) vector 
and γ is a scalar. Since ( 1) ( ) ( ) ( ) ( 1)

1 11 12 ,K K K K KA A A Q A+ + =    will have the 
form:

11 12

22

0
0

T T

R R

R

β

 
 
 
 
 
Now, let \

1Q  be the product of the plane rotations which gives: 

\
\

1
22 0

T

T

R
Q

R

β   
=   
     

where R' is (Lk-q)×(Lk-q) upper triangular. In this case \
1Q  is an (Lk-

q+1)×(Lk-q+1) orthogonal matrix. Thus if \ \
1

0 0
0 0 1
0 0

K

K

I q L
Q Q L q

I n L

− 
 = − + 
  − 

Which is orthogonal, then 
1211

( ) ( 1) '
1

1
' 0

10 0

K K
K

K

R qR
Q Q A L qR

n L

+

− 
 = − 
  − + 

So we obtain ( 1) \ ' ( )K KQ Q Q+ =  and 11 12( 1)
'0

K R R
R

R
+  

=  
 

 	            (20)

Thus, only the rows from the qth to the Lk
th of Q(K) are altered in 

obtaining Q(K+1), so if Q(K+1) is partitioned into 
( 1)

1( 1) 1
( 1)

12

K
KK

K
K

LQ
Q

n LQ

+
−+

+
+

 
=   − 

			                 (21)

then ( 1)
2

KQ + , in particular, takes the form:



Citation: Siddieg AMAEl (2018) An Algorithm for Solving Indefinite Quadratic Programming Problems. J Appl Computat Math 7: 380. doi: 10.4172/2168-
9679.1000380

Page 3 of 4

Volume 7 • Issue 1 • 1000380J Appl Computat Math, an open access journal
ISSN: 2168-9679 

is complementary). Otherwise the third iteration will definitely restore 
complementarity at another vertex leaving (3) 0AG = . In the former case 
the dimension of (2)

AG  is 1. In general the dimension of ( )K
AG  keeps 

on increasing when constraints are deleted, and updating the factors 
is straight forward as will be shown. On the other hand the dimension 
of ( )K

AG  keeps on decreasing when constraints are added to the active 
set, and in this case we are faced with re-factorizing the factors. We 
return to the case when the (k+1)th iteration is complementary. Here we 
are almost copying the work of in eqn. (9). In this case, as in eqn. (25) 

shows ( 1)
2 ( )

2

T
K

K

q
G

Q
+  
=  
 

, and using in eqn. (19) we have :

 ( 1) ( 1) ( )
2

TK K KZ I G Z q+ +  = =  
  			                (30)

the matrix ( 1)K
AG +  is given by:

( ) ( )

( 1) ( 1) ( 1)
( )

T

K K T
AK K K

A TT K

G Z Gq
G Z GZ

q GZ q Gq
+ + +

 
 = =
  

	               (31)

It can be shown that when a symmetric matrix is augmented by a 
single row and a column, the lower-triangular factor is augmented by 
a single row. Define:

( )( )
( 1) ( 1)

1

00
,

1 1 0
K

KK
K K

TT
n L

DL
L D

d
+ +

− +

  
= =   

    
 		              (32)

If we substitute in eqn. (31) and in eqn.(32) into the identity:
( 1) ( 1) ( 1) ( 1)TK K K K
AG L D L+ + + += , we obtain L  and dn-LK+1 as the 

solution of the equations
( ) ( ) ( )1K K K TL D Z Gq=  				                (33)

and ( )
1K

T T K
n Ld q Gq L D L− + = −  			               (34)

The numerical stability of this scheme is based on the fact that, if 
( 1)K
AG +  is positive definite, the element 1Kn Ld − +  must be positive. In this 

event in eqn. (34) ensures that arbitrary growth in magnitude cannot 
occur in the elements of L .

Before ending this section we show that when the kth iteration and 
the (k+1)th iteration are complementary then ( 1)K

AG +  must be positive 
definite. 

Let the tableau be complementary at the kth iteration. Let ( )
1

KA  be 
the matrix whose columns correspond to the active constraints, and 

( ) 0K
qλ < . The increase of vq changes f according to 

( ) 20.5K
q q qq qf f v u vλ= + −  			                 (35)

( )T
qq q qu e U e=

( )K
q q qq qu vλ λ= −  				                   (36)

and x  changes according to 
( )K

qqx x T e v= +  				                 (37)

For the next tableau (i.e., the (k+1)th)) to be complementary uqq 

must be negative, and the new value 
( )

( 1)
K

qK
q

qq

v
u
λ+

 
≡  
 

 of vq must not 
violate feasibility. 

Thus, using in eqn. (35), we have 
2

2 0qq
q

d f u
dv

= − >  which reflects 

the fact that f possesses a positive curvature along the direction qT e . 

( 1)
2 ( )

1

T
K

K

q
Q

Q
+

 
=  
  

 				                 (22)

Note also that the first q-1 rows of Q1
(k) are not changed. This fact 

might be helpful as far as efficiency is concerned if we want to think 
of another alternative of choosing q in eqn. (1), such an alternative is:

Q=max{i=λi<0,1≤i≤Lk}		   		               (23)

So that increase the number of rows of Q1
(k) and R(K) which 

are unaltered in iteration (K+1), which in turns reduces the effort, 
especially when Lk is relatively large. We now consider the second 
case when complementarity is restored at the (k+r+1)th iteration. Let 

'

1,..,pr pW a a− = −  . Let ( 1)
1

KA +  be obtained from A1
(k) by removing qa . 

Thus 
( 1) ( 1) ':K r KA A W+ + + =    		   		               (24)

Pre-multiplying both sides in eqn. (24) by Q(k+1) (defined in eqn. 
(21)) we get

( 1) '
1( 1) ( 1) 1

'
120

K
KK K r

K

LR W
Q A

n LW

+
−+ + +

+

 
=   − 

		               (25)

where ' ( 1) '
1 1

KW Q W+=  , ' ( 1) '
2 2

KW Q W+= and R(k+1) is defined in eqn. (20)

let 
'

'' ' 2
2 2 0

R
Q W

 
=  
 

				                  (26)

Define the QR-factorization of '
2W . Here ''

2Q  is (h-Lk+1)×(n-
Lk+1) and orthogonal, and '

2R  is r×r upper triangular. If 

\ \
''
2

1 0 1
0 1

K

K

L
Q

Q n L
− 

=   − + 

Then 

( 1) '
1

'' ( 1) ( 1) '
2

1
0
0 0 1

K
K

K K r

K

R W L
Q Q A R r

n L r

+

+ + +

  −
 =  
  − − − 

 	              (27)

Thus we obtain the QR-factorization of A(k+r+1) with
( 1) '' ( 1) '' ' ( )K r K KQ Q Q Q Q Q+ + += =  			                (28)

And 
( 1) '

( 1) 1
'
20

K
K r R W

R
R

+
+ +  

=  
 

 			                 (29)

Updating The LDLT-Factors of ( )K
AG

The factors ( ) ( ) ( )TK K KL D L  of ( )K
AG  are updated at each iteration when 

the tableau is complementary. Near the end of this section we show 
that (1)

AG  is always positive definite (on the assumption that ( )K
AG  is 

positive semi-definite). Updating these factors is very stable when ( )K
AG  

is positive definite as we shall see. This fact is counted as one of the 
good numerical features of the method. We consider the case when 
the (k+1)th iteration results in a complementary tableau. Unfortunately, 
in the other case when complementarity is restored at the (k+r+1)th 
iteration, we are unable till now to explore a way of using the factors 
of ( )K

AG  in obtaining those of ( 1)K r
AG + + . However  n-Lk-r, the dimension 

of ( 1)K r
AG + + , decreases with r, in which case the effort of re-factorizing 

( 1)K r
AG + +  might not be so much, especially when n-Lk is itself small. 

This calls for choosing the starting L1 so that n-L1 is small. In the case 
when the number of constraints is greater than n, L1 is chosen to be 
equal to n; that is the initial guess (1)x  is a vertex. With this choice 

(1) 0AG = , and in the second iteration we might expect a constraint to be 
deleted from the active set (which is the case when the second iteration 



Citation: Siddieg AMAEl (2018) An Algorithm for Solving Indefinite Quadratic Programming Problems. J Appl Computat Math 7: 380. doi: 10.4172/2168-
9679.1000380

Page 4 of 4

Volume 7 • Issue 1 • 1000380J Appl Computat Math, an open access journal
ISSN: 2168-9679 

Now let ( 1)
1

KA +  be obtained from ( )
1

KA  by removing qa  and let Z(k+1) be 
defined so that ( 1) ( 1) 0

TK KZ A+ + = .

Pre-multiply both sides of in eqn. (37) by ( 1)TKA +  to get:
( 1) 0

TK
qA T e+ =  					                    (38)

showing that qT e  lies in the space spanned by the columns of Z(k+1), so

 ( 1)K
qT e Z h+=  					                  (39)

for some (n-Lk+1) vector h . Since along qT e  at ( 1)K
qv + , 0

q

df
dv

=  and 
2

2 0
q

d f
dv

> , then f is minimum along qT e  at ( 1)Kx + , where 

( 1) ( ) ( 1)K K K
q qx x T e v+ += + 				                (40) 

We therefore conclude, in the active set methods sense, that the 
direction ( 1) ( 1)K K

q qT e vδ + +=  solves the equality problem:

minimize ( )( )0.5 T T KG Gx gδ δ δ+ +

Subject to ( 1) 0
TKA δ+ =  				                  (41)

Using (39),
( 1)( 1) ( 1) ( 1) ( 1)KK K K K
q AZ h v Zδ δ

++ + + += = , thus )1( +Kaδ  solves 
the problem

minimize ( ) ( )( )( 1) ( 1)0.5
TT T KK K

A A AZ GZ Gx gδ δ δ+ + + + ,

from which we conclude that ( 1) ( 1) ( 1)TK K K
AG Z GZ+ + +=  is positive definite.

Finding an Initial Feasible Point
In this section we are not going to describe a fully detailed method of 

obtaining an initial feasible point, since linear programming literature 
is full of such techniques. The method of finding a feasible point has 
been resolved in linear programming by a technique known as phase 
1 simplex [27]. The basis of the technique is to define an artificial 
objective function, namely: ( )

( )
( ) T

j j
j v x

F x a x b
∈

= − −∑ , where ( )v x  is the 

set of indices of constraints which are violated at the point x , and to 
minimize this function with respect to x , subject to the constraints 

0T
jja x b− ≥ , ( )j v x∉ . The function ( )F x  is linear and is known as 

the sum of infeasibilities. If a feasible point exists the solution *x  of 
the artificial problem is such that *( ) 0F x = . In the case when m exceeds 
n, a non-feasible vertex is available as an initial feasible point to phase 
1 and the simplex method is applied to minimize ( )F x . This process 
will ultimately lead to a feasible vertex [28]. Direct application of this 
method to finding a feasible point in the case when m is less than n is 
not feasible since, although a feasible point may exist a feasible vertex 
will not. Under these circumstances artificial vertices can be defined 
by adding simple bounds to the variables, but this could lead to either 
a poor initial point, since some of these artificial constraints must be 
active, or exclusion of the feasible region. A way out of this dilemma 
is described [6-9] a number of methods including the above one have 
been described. Gill and Murray is advantageous in that it makes 
available the QR-factorization of the initial matrix of active constraints 
which is then directly used in our algorithm. 

References
1.	 Bazaraa SM, Sherali DH, Shetty CM (1994) Nonlinear Programming: Theory 

and Algorithm.

2.	 Coleman LLS (1990) Numerical Optimization. SIAM Books.

3.	 Cottle RW (1990) The Principle Pivoting method positive visited math program. 
48: 369-385.

4.	 David GL (2003) Linear and nonlinear programming (2nd edn.), Pearson 
Education.

5.	 Dennis, Schnabel (1996) Numerical Methods for unconstrained Optimization 
and nonlinear equation classics in applied Mathematics. Society for Industrial 
and Applied Mathematics.

6.	 Fletcher R (2013) Practical Methods of Optimization. (2nd edn.), John Wiley 
and Sons.

7.	 Gill PE, Murray W (1973) A numerically stable form of the simplex Algorithm. 
Journal Linear Algebra Applors 7: 99-138.

8.	 Gill PE, Murray W (1975) Numerical Methods for constrained optimization. 
Academic press.

9.	 Gill PE, Murray W (1978) Numerically Stable methods for quadratic 
programming. Math Programme  14: 349-372.

10.	Gill PE, Murray W, Margaret W (1981) Practical Optimization. Academic Press.

11.	Kunisch K, Rendl F (2003) An infeasible active set method for quadratic 
problems with simple bounds. SIAM Journal on Optimization 14: 35-52.

12.	Mohsin HAH (1996) An Extension to the Dantzig-Wolfe Method for general 
quadratic programming. University of Khartoum.

13.	Byrd RH, Gillbert JC, Nocedal J (2000) A trust region method based on interior 
point techniques for nonlinear programming. 9: 149-185.

14.	Boyd S, Vandenberghe L (2004) Convex Optimization. Cambridge University.

15.	Jorge N (2006) Stephen Wright books. Springer Series in Operations Research 
and Financial Engineering.

16.	Stephen G N, Ariela S (1996) Linear and non -liner programming. McGraw Hill, 
New York.

17.	Anitescu M (2005) On solving mathematical Programs with complementarity 
constraints as nonlinear programs. SIAM Journal on Optimization 15: 1203-
1236.

18.	Byrd RH, Hribar ME, Nocedal J (1999) An interior point algorithm for large-
scale nonlinear programming. Society for Industrial and Applied Mathematics 
9: 877-900.

19.	Gould NIM, Toint PL (2005) An interactive working set method for large scale 
nonlinear optimization, Acta Numerica 14: 299-361.

20.	Gould NIM, Tiont PL (2002) An iterative working set method for large scale non-
convex quadratic programming. Applied Numerical Mathematics 43: 109-128.

21.	Fletcher R, Leyffer S (2002) Nonlinear programming without a penalty function. 
Mathematical Programming 91: 239-269.

22.	Gill PEM, Murray W, Wright M (1991) Numerical Linear Algebra and 
Optimization. 

23.	Kočvara M, Stingl MP (2003) PENNON: A code for non-converx non-linear and 
semi-definite programming Optimization Methods and software. 18: 317-333.

24.	Vanderbi RJ, Shanno DF (1999) An interior point algorithm for non-convex non-
linear programming. Computation and Applications 13: 231-252.

25.	Vavasis SA (1990) Quadratic programming is NP. Information Processing 
Letters 36: 73-77.

26.	Gill PEM, Murray W, Wright MH (1981) Practical Optimization. Academic Press.

27.	 Vavasis SA (1991) Nonlinear Optimization. Oxford University Press, New York 
and Oxford. 

28.	Higham NJ (1996) Accuracy and Stability Of Numerical Algorithms. SIAM 
Publications Philadelphia.

http://solab.kaist.ac.kr/files/IP/IP2015/BSS_Lagr dual_Nonlinear.pdf
http://solab.kaist.ac.kr/files/IP/IP2015/BSS_Lagr dual_Nonlinear.pdf
http://www.springer.com/gp/book/9781402075933
http://www.springer.com/gp/book/9781402075933
http://epubs.siam.org/doi/abs/10.1137/1.9781611971200
http://epubs.siam.org/doi/abs/10.1137/1.9781611971200
http://epubs.siam.org/doi/abs/10.1137/1.9781611971200
http://onlinelibrary.wiley.com/book/10.1002/9781118723203
http://onlinelibrary.wiley.com/book/10.1002/9781118723203
https://www.sciencedirect.com/science/article/pii/0024379573900475
https://www.sciencedirect.com/science/article/pii/0024379573900475
http://onlinelibrary.wiley.com/doi/10.1002/nme.1620110517/pdf
http://onlinelibrary.wiley.com/doi/10.1002/nme.1620110517/pdf
https://link.springer.com/article/10.1007/BF01588976
https://link.springer.com/article/10.1007/BF01588976
https://nyuscholars.nyu.edu/en/publications/practical-optimization
http://epubs.siam.org/doi/abs/10.1137/S1052623400376135
http://epubs.siam.org/doi/abs/10.1137/S1052623400376135
https://link.springer.com/article/10.1007/PL00011391
https://link.springer.com/article/10.1007/PL00011391
http://imb-biblio.u-bourgogne.fr/Record.htm?record=19110786124919389689
https://pdfs.semanticscholar.org/1e23/58031f2870c45014b66df5534cfc9febe021.pdf
https://pdfs.semanticscholar.org/1e23/58031f2870c45014b66df5534cfc9febe021.pdf
https://pdfs.semanticscholar.org/1e23/58031f2870c45014b66df5534cfc9febe021.pdf
http://epubs.siam.org/doi/abs/10.1137/S1052623497325107
http://epubs.siam.org/doi/abs/10.1137/S1052623497325107
http://epubs.siam.org/doi/abs/10.1137/S1052623497325107
ftp://hsl.rl.ac.uk/pub/reports/gtRAL2001026.pdf
ftp://hsl.rl.ac.uk/pub/reports/gtRAL2001026.pdf
https://link.springer.com/article/10.1007/s101070100244
https://link.springer.com/article/10.1007/s101070100244
https://nyuscholars.nyu.edu/en/publications/numerical-linear-algebra-and-optimization
https://nyuscholars.nyu.edu/en/publications/numerical-linear-algebra-and-optimization
http://www.tandfonline.com/doi/abs/10.1080/1055678031000098773
http://www.tandfonline.com/doi/abs/10.1080/1055678031000098773
https://link.springer.com/article/10.1023/A:1008677427361
https://link.springer.com/article/10.1023/A:1008677427361
https://ecommons.cornell.edu/handle/1813/6939
https://ecommons.cornell.edu/handle/1813/6939
https://nyuscholars.nyu.edu/en/publications/practical-optimization
https://dl.acm.org/citation.cfm?id=525601
https://dl.acm.org/citation.cfm?id=525601

	Title
	Corresponding author
	Abstract 
	Introduction
	Practical Application of the Algorithm 
	Updating the QR-Factors of  
	Updating The LDLT-Factors of  

	Finding an Initial Feasible Point 
	References 

