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Abstract
In this paper a highly sensitive detection methodology for obtaining the concentration of protein tumor markers 

via the selective incorporation of super paramagnetic iron oxide nanoparticles (MNP) onto an antigen is reported. 
The tumor marker concentration is measured with a nano-oxide layer inserted giant magneto-resistive (GMR) sensor 
that determines the attenuation of an external magnetic field that is induced by the MNP. The 15 nm MNPs, used 
herein, exhibit a super paramagnetic behavior with saturation magnetization of 36 emu/g. The output voltage signal of 
the Specular GMR sensor is 500 µV/Oe. The patterned GMR multiple-bio-sensor array, has demonstrated real-time 
measurements of carcinoembryonic antigen (CEA) protein concentrations down to femtomole level (10-15 mole) in 
a variety of clinically relevant media with a linear dynamic range of over five orders of magnitude. The sensitivity of 
the GMR bio-array platform is 1000 times higher than conventional enzyme-linked immunosorbent assay (ELISA) 
technique. The arrays of magnetoresistive sensors offer great promise in applications for early cancer diagnosis. 

*Corresponding authors: Wei Zhang, State of Key Laboratory of Materials-
oriented Chemical Engineering and School of Chemical Engineering, Nanjing Tech 
University, Nanjing, Jiangsu, 210009, PR. China, Tel: 86 25-83587060; E-mail: 
zhangw@njtech.edu.cn

Xuefeng Hu, State of Key Laboratory of Materials-oriented Chemical Engineering
and School of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu,
210009, PR. China, E-mail: xuefeng.hu@njtech.edu.cn

Received November 25, 2015; Accepted December 29, 2015; Published January 
10, 2016

Citation: Yang N, Li T, Zhang PP, Chen X, Hu X, et al. (2016) An Early Cancer
Diagnosis Platform based on Micro-magnetic Sensor Array Demonstrates Ultra-
high Sensitivity. J Nanomed Nanotechnol 7: 344. doi:10.4172/2157-7439.1000344

Copyright: © 2016 Yang N, et al. This is an open-access article distributed under
the terms of the Creative Commons Attribution License, which permits unrestricted 
use, distribution, and reproduction in any medium, provided the original author and 
source are credited.

Keywords: Colorectal cancer; Nanoparticles; Protein microarrays;
Quantum dots; Superparamagnetic property

Introduction
Colorectal cancer (CRC) is one of the most commonly diagnosed 

types of cancer worldwide. Carcinoembryonic antigen (CEA) in 
human serum is reported to be an important biomarker for early CRC 
diagnosis [1-3]. Because CEA’s concentration in human serum is 
very low (approximately 2.5 ng/mL), a highly sensitive measurement 
technique for the identification of the presence of CEA is required. 
Currently Enzyme-linked immunosorbent assay  (ELISA) [4,5] is 
a widely used protein readout method based on a fluorescent or 
colorimetric transducer response. However, inherent auto fluorescence 
and optical absorption of either the matrix of biological samples 
or reagents is a major limiting factor of ELISA technique. Several 
other technologies, such as, nanowires [6], carbon nanotubes [7], 
electrochemical biosensors [8], protein microarrays [9], and quantum 
dots [10], has been also investigated as diagnostic tools for protein 
detection. The detection physics for these non-optical methods are 
rooted in charge-based interactions between either the protein or tag 
and the sensor, which limits the reliability of these sensor types due to 
solutions of varying pH and ionic strength. 

Bio-sensing strategies based on magnetic nanoparticles (MNP) 
have received considerable attention [11,12]. Magnetic particles possess 
unique magnetic properties and easily functionalized with stable, 
nontoxic protective coatings for bioconjugation [13-15]. Magnetic 
background in biological samples is minimal, since these are composed 
predominantly of diamagnetic molecules, and even large magnetic 
fields are compatible with biochemical processes. In particular, the stray 
magnetic fields from the beads, as well as externally applied field gradients 
which can be used to generate forces on the beads to remotely manipulate 
them are not screened in an aqueous biological environment. Tiny size, 
which exhibits a superparamagnetic property, allows for the formation of 
stable dispersion in reaction solution, making them well suitable for target 
separation [14,16,17], targeted delivery of therapeutic agents [18], and 
biosensor based diagnostics [19]. 

Among these platforms or concepts using magnetic nano- particle 
labels and magnetometers, the first demonstration of detecting 
biological molecules by employing magnetic labels was achieved with 
superconducting quantum interference device (SQUID) [20]. In 1998, 

Baselt et al. introduced the bead array counter (BARC) for the detection of 
a single molecule combined with a magnetic particle [21]. This platform 
was then developed into a system for biological warfare agents detection 
[22]. In addition, the efforts paid on substituting giant magnetoresistive 
(GMR) sensors for traditional magnetic sensors in immunoassay or lab-
on-a-chip-based rapid point-of- care testing (POCT) has been significantly 
increasing [23-25]. Most recent studies [26-35] have demonstrated the 
usage of GMR biosensors that detect either as few as 600 streptavidin 
coated magnetic particle (<10-21 mol, zeptomol) or CEA with at lower 
limit of detection around 50 fM (10-15). For CEA sensing, it is ideal to 
have the particle labels either 20 nm or smaller in diameter [36]. However, 
the magnitude of the detectable magnetic field decrease with particle size, 
thus, a more sensitive sensors and measurement systems is required [37]. 

In this paper, a low-amount biomarker detectable platform 
based on a 15 nm diameter MNPs and high sensitive specular giant 
magnetoresistance (GMR) sensors was investigated. The GMR ratio 
can be enhanced by nano-oxide layer (NOL) insertion inside the 
pinned layer. The magnetic particle agglomeration can be avoided 
due to the superparamagnetism.. The ultra-small size of MNPs can 
be more comparable to that of the conjugating biomolecules so that 
they would not block biomolecular interactions. We also demonstrate 
the feasibility of this detecting system for real biological applications, 
with the example of the logarithmic detection of CEA, a breast cancer 
biomarker, through a sandwich-based principle.
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Experiment
A specular GMR stack with Ta (1.5 nm)/NiFeCr (3 nm)/PtMn (12 

nm)/CoFe (1.8 nm)/Ru (0.85 nm)/CoFe (1 nm)/Nano oxides layers 
and (NOL, 1.3 nm)/CoFe (2 nm)/Cu (2.1 nm)/CoFe (0.8 nm)/NiFe 
(1.5 nm)/Cu0.8 nm/Ta (1.2 nm) layers was deposited with a sputtering 
system (Anelava, JPN). In order to obtain best sensitivity of the sensor, 
the magnetization of free layer and the pinned layers of the sensor are 
set perpendicular relative to each other by two annealing steps under 
magnetic fields with 6 tesla and 500 Oe respectively. GMR sensors 
with a nominal size of 200 × 150 µm were then created via the optical 
photolithography technique.

As shown in Figure 1, similar to ELISA, the magnetic arrays 
require bio-function steps and links prior to real-time measurement. 
To form the base layer of the bio-functionalization, a 2% solution of 
polyethyleneimine (PEI) (Shanghai Qunfang Bio) in deionized water 
was applied to the chip surface. CEA analyte (Shanghai, NC-Bio) was 
diluted to the desired concentrations in the phosphate buffer saline 
(PBS). Twenty µL of this solution were selectively pipetted into sensors 
which were printed by captured antibodies onto sensors blocked by 
bovine serum albumin (BSA). Biotinylated antibodies to CEA (Ocean 
Nanotech) were diluted to a concentration of 2 µg/ml in PBS. 20 µL 
of this linker antibody solution were pipetted onto the surface of each 
sensor. Finally, 40 µL of streptavidin labeled MNPs (Ocean Nanotech) 
was added and incubated without stirring for 30 min at room 
temperature.

The size and morphology of the MNPs were characterized by 
Transmission Electron Microscopy (TEM). Electron Energy Loss 
Spectra (EELS) was used to characterize the composition of the 
streptavidin labeled MNP. The magnetic property measurement of the 
MNPs was carried out at room temperature by using a Superconducting 
Quantum Interference Device (SQUID). Analyte quantification was 
performed on a probe station (KLA-350 A), which used a source meter 
in a two-point configuration. Local external magnetic fields up to 3000 
Oe in either the transverse (hard axis) or longitudinal (easy axis) direction 
relative to the sensor was generated by a quadarupole magnet [38].

Result
A typical TEM image of the MNPs is presented in Figure 2a. 

The MNPs exhibit a spherical shape with an average size of around 
15 nm. As shown in Figure 2b, the MNPs, characterized by SQUID, 
display a saturation magnetization of 36 emu/g under a field of more 
than 40 KOe and 1.01 emu/g at a field of 100 Oe. It is estimated that 
1 gram of these 15 nm MNPs will correspond to 2.63 x 1017 particles. 
The net magnetic moment of single MNP is 6.66 x 10-17 emu at a 
field of 40 kOe and 3.8 x 10-18 emu at a field of 100 Oe [39]. TEM 
images of streptavidin-modified nanoparticles, as shown in Figure 2c, 
demonstrated uniform streptavidin modification with no significant 
particle aggregation. The iron compositions of streptavidin-modified 
MNP, as characterized by EELS, as shown in Figure 2d, exhibited a 
streptavidin uniformly distributed across the MNP particle with no 
perceivable grain boundary. The aforementioned findings suggest not 
much significant nonspecific binding of streptavidin to the magnetic 
nanoparticles.

Each layer of secular GMR stack, as shown at Figure 3, has an nm-
level thickness with sharp interface between layers. Magnetoresistance 
ratio (MR) ratio for the full-film specular GMR sensor, measured by 
the field strength along the hard axis (transverse), is about 16% with a 
maximum sensitivity of 1.6% Oe-1 at 10 Oe field. Very slight hysteresis 
is shown in the loop for full film specular GMR [37,38,40,41]. The 

optical image of patterned specular GMR bioarrary is shown at Figure 
4a. Each sensor was patterned into a square shape with 200 µm × 200 
µm dimensions. After electrode deposition (250 µm × 25 µm), each 
sensor occupies an active area of 200 µm by 150 µm while the edge to 
edge distance of two sensors’ separation is 100 µm. The resistance of 
each sensor is about 1.1 K Ω under a zero field. 

To achieve statistically reliable results, for the CEA detection 
experiments, five sensors were selected. The concentration of CEA was 
about 500 femtomole (1 ng/mL, 1 µL droplet). The aforementioned 
second group of 5 sensors acted as negative controls. The MR loops 
of specular GMR sensors with CEA analyte and sensor blocked by 
BSA were measured before and after the spiking of the streptavidin 
labeled MNPs. As shown on Figure 4b, all curves exhibited giant 
magnetoresistance (GMR). The dR/R was 10.03% and 8.99% for 
patterned sensors before and after the MNPs was spiked, respectively. 
In contrast, a 10.01% dR/R was measured for sensors with BSA 
blocking under the hard-axis bias condition. Shape anisotropy due 
to the patterned rectangle GMR sensor caused hysteresis to appear in 
the loop in the transverse curve. The dR/R ratio changes before and 
after magnetic particle incorporation is used to identify low amounts 
of biomolecules. The sensitivity of the sensor before MNPs spiking is 
around 0.5%/Oe (and 500 µV/Oe). Each dipole moment generated 
from magnetic particle creates a small added field component Hdipole 
at the sensor. The sensor will experience an effective field strength 
which is slightly smaller than the external applied field (Heffect = 
Happlied − Hdipole). This effect generates a detectable signal on the 
GMR sensor arrays, normally a decrease in dR/R. The signal levels of 
500 femtomole CEA is 5 × 104 µV, which is significantly larger and 
distinct from the nonspecific signal of 15 µV on the sensor blocked 
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Figures 1: A cartoon of the GMR bioassay: (1) Capture antibodies 
(yellow) are immobilized onto the surface of the sensor; (2) The chosen 
antigens (CEA in the present case, blue) are complementary to the 
capture antibodies (yellow) and the non complementary antigens are 
subsequently washed away; (3) The biotinylated detection antibody 
(purple) complementary to the antigen of interest binds in a sandwich 
structure and the non complementary antibodies are washed away. (4) A 
streptavidin (deep red) labeled MNPs (black) are added to the solution, and 
it binds the biotinylated detection antibody. Unbounded streptavidin labeled 
SPION is removed by an applied magnetic field. (5) Finally, the magnetic 
fields from the magnetic nanoparticles binding to detection antibody can be 
detected by the underlying GMR sensor in real-time with the presence of a 
small external modulation magnetic field.
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(a)  (b)  

(d)  (c)  

Figure 2: (a) TEM bright-field image for the spherical iron–oxide MNPs with 
an average diameter of 20 nm; (b) SQUID measurement of the MNP. The 
saturation magnetization is 36 emu/g; (c) TEM images of MNP particles 
modified by streptavidin, indicating no significant particle aggregation; 
(d) EELS composition analysis of streptavidin labeled MNP, suggesting 
uniform Fe distribution across MNP particles and carbon across the 
streptavidin coating. 

 

Figure 3: The scheme and TEM image of a full film specular GMR stack 
and transvers curve.  (a) The scheme of a specular GMR stack; (b) TEM 
image of a specular GMR stack with Ta (1.5nm )/NiFeCr (3 nm)/PtMn (12 
nm)/CoFe (1.8nm)/Ru(0.85 nm)/CoFe (1 nm)/Nano oxides layer (NOL, 
1.3 nm)/CoFe (2 nm)/Cu (2.1 nm)/CoFe (0.8 nm)/NiFe(1.5 nm)/Cu0.8nm/
Ta(1.2 nm) layers; (c) The transfer curve of the specular GMR full film with 
a MR value of 16% and  a maximum sensitivity of 1.6% Oe-1 in a 10 Oe field.

by BSA. The longitude MR transfer curve is shown in Figures 4c and 
4d as well. The longitudinal curve exhibited the same trend as did the 
transverse field, and a 0.5% MR drop was observed. 

To deduce the dynamic range of signal versus concentration 
scaling relationship, a series of quantitative calibration experiments 
employing varying carcinoembryonic antigen (CEA) concentration 
were conducted. CEA analyte was diluted in a PBS buffer to produce 
analyte concentrations ranging from 1 ng/mL (molar concentration 5 
pM) to 1 pg/mL (molar concentration 5 fM). Eight solutions containing 
between 5 fM to 500 pM CEA analyte were using for testing of the sensor 
system. Each of the 8 solutions was pipetted onto five active sensors on 
the array. From the CEA concentration and sensor signal, the linear 
response curve (on a log–log plot) shown in Figure 5 was created. 
Linearity of response was obtained even at the fM concentration. These 
results indicate that detection of CEA is possible down to the fM-level 
without any biological amplification. This dynamic range of linearity 
is comparable to the best GMR-based detecting [30,42] and is three 
orders of magnitude higher than conventional ELISA (4 pM) [43-45]. 

Discussion
The enhancement of NOL (nano-oxide-layer) insertion and 

specular effects on the giant magnetoresistance (GMR) can be explained 
by the semiclassical Boltzmann theory. Spin valves (SVs) consist of two 
ferromagnetic (FM) nanolayers separated by a non-magnetic spacer. 
One of the FM layers is pinned by an adjacent AFM layer, while the 
other (free layer) rotates its magnetization (M) under a small magnetic 
field. This allows both magnetizations either parallel (low resistance) or 
antiparallel (high resistance) to be obtained with an externally applied 
magnetic field. The nano-oxide layer NOL inserted either adjacent to 
the pinned layer or free layers [46-48] can highly enhance the majority 
spin orientated electrons specularly scatter at NOL [49,50] and thus a 
high dR/R.

In order to support the observations in this study, the theoretical 
magnetic stray field of a fully magnetized 15 nm diameter Fe3O4 
nanoparticle was calculated at different distances from the free layer 
of GMR sensor. The stray field, H, of a magnetic dipole of length l 
placed perpendicularly on top of the sensing area of the GMR sensor at 
a distance d is approximated by the following formula (the case that d 
>>l in CGS units by Bozorth [51]









= 2

2

3 d4
l3-1

d
MH  				                   (1)

With M being the magnetic moment (5 × 10-18 emu, of a single 
Fe3O4 nanoparticle from SQUID measurement at 100 Oe), and l is 
the characteristic particle dimension (in this case the 15 nano meter 
diameter). The calculation shows the theoretical active distance of the 
sensor (at 3 × 10-4 Oe) lies between 200 and 250 nm above the sensor. 
The stray field of the 2 Oe observed in Figure 4b, in principle, can be 
produced by 6 × 104 magnetic nanoparticles of size 15 nm passing the 
sensor at a height of approximately 200 nm. To further enhance the 
detecting sensitivity of GMR bioassay, decreasing the distance between 
MNP and the free layer of the sensor is critical too.

The 15 nm MNP-based specular GMR assay presents a very sensitive 
magnetic detection method for protein arrays. With carefully screened 
antibodies, the sensitivity and selectivity of the MNP-based specular GMR 
assay is already sufficient for clinically relevant protein detection in real 
world serum samples [52,53]. The technique can be readily performed with 
the multiplex protein detection. Individual sensor microspotting will allow 
the accommodation and measurement of up to 22000 different probes 
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(c) (d) 
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Figure 4: (a) The optical images of a patterned GMR bioarray; (b) MR transfer loop of a GMR bioarray before and after MNPs spiked along with sensors with BSA 
blocking under a magnetic field along the hard-axis bias (transverse); (c) MR transfer loop of a GMR bioarray before and after MNPs spiked along with sensors with 
BSA blocking under a magnetic field along the easy-axis bias (Longitude). (d)  TEM images of the MNP spiked on the sensor surface.
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Figure 5: Graph of GMR sensor resistance deviations with axis of ∆R 
versus iron–oxide MNP concentrations. The fitting curve (solid line) 
designates that the resistance deviation of the GMR sensor changes 
logarithmically with MNP concentration.

on a current generation chip (probing throughput not withstanding). It 
is expected that significant sensitivity improvements can also be made on 
the sensor; for example, using either a biased magnetic tunnel junction 
sensors based on MgO barrier or by using sensors with smaller geometry 
[54]. In the near future, capture agents with higher affinity, and similarly 
small but higher magnetic moment MNPs are expected to further enhance 
the analytic sensitivity of MNP-based assays.

In conclusion, the highly sensitive detection of protein tumor 
markers incorporating a MNP based specular GMR bio-assay was 

demonstrated. Also, it was demonstrated the detecting system can 
adopt the principle of ELISA assay with improved sensitivity. The 
GMR bioarray, permits real-time measurements of CEA protein 
concentrations down to the femtomolar level with a linear dynamic 
range of over five orders of magnitude. This GMR- and magnetic-
nanoparticle based detecting system, therefore, is expected to be 
applicable to many other biological systems for detection and 
quantification of various biomolecules. The high sensitivity of this 
detecting system opens new paths for the detection of biomolecules 
involved in the etiology of various diseases. Most importantly, the 
magnetic/electric nature of this detecting system and the associated 
cost benefit, scalability and versatility will help the realization of 
personalized medicine. 
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