
Ashdin Publishing
International Journal of Swarm Intelligence and Evolutionary Computation
Vol. 1 (2012), Article ID Z110601, 7 pages
doi:10.4303/ijsiec/Z110601

Research Article

An Evolutionary Algorithm for Selective Disassembly of
End-of-Life Products

Ahmed ElSayed,1 Elif Kongar,2 and Surendra M. Gupta3

1Department of Computer Science and Engineering, School of Engineering, University of Bridgeport, 221 University Avenue,
141 Technology Building, Bridgeport, CT 06604, USA
2Departments of Mechanical Engineering and Technology Management, School of Engineering, University of Bridgeport,
221 University Avenue, 141 Technology Building, Bridgeport, CT 06604, USA
3Laboratory for Responsible Manufacturing, 334 SN, Department of Mechanical and Industrial Engineering,
Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
Address correspondence to Elif Kongar, kongar@bridgeport.edu

Received 2 June 2011; Revised 28 September 2011; Accepted 2 October 2011

Abstract This paper addresses the problem of creating
intelligent, green, and financially-beneficial disassembly
sequences for end-of-life (EOL) electronic products. These
complex EOL products contain a broad spectrum of materi-
als including precious metals. Therefore, one would have to
process these products to retrieve the value buried in them.
EOL processing options include, reuse, remanufacturing,
recycling or proper disposal. Each of this option requires a
certain level of disassembly. Hence, obtaining an optimal or
near optimal disassembly sequence is crucial to increasing
the efficiency of EOL processing. Since the complexity
of determining the best disassembly sequence increases
as the number of parts in a product grows, an efficient
methodology is required for disassembly sequencing. In this
paper, we present an evolutionary algorithm for generating
near-optimal and/or optimal sequences for selective
disassembly of EOL products. A numerical example is
provided to demonstrate the functionality of the algorithm.

Keywords selective disassembly sequencing; electronic
waste; end-of-life; evolutionary computing; genetic algo-
rithm

1 Introduction

Advanced technology products are regularly rendered tech-
nically obsolete within a few years of commercialization due
to the rapid pace of technological enhancement. Thus, for
example, electronic products are frequently discarded before
their materials degrade. These complex end-of-life (EOL)
products contain a broad spectrum of materials including
precious metals such as silver and gold and valuable materi-
als such as copper. Therefore, efficient recovery of materials
in the electronic EOL products is essential not only for eco-
nomic reasons but also for a sustainable environment. The
practical lifetime of an electronic product depends primarily

on the pace of superseding technological advancement that
could make the otherwise fully-functioning product virtu-
ally obsolete.

However, the discarded product is likely to contain one
or more usable component(s). The economically and envi-
ronmentally sustainable option is to reuse these components
in technically valid products. EOL processing options such
as reuse, recycle and remanufacturing are effective ways to
reclaim the materials and the components in electronic EOL
products [5,8]. Regardless of the motivation, most EOL
processing options necessitate a certain level of disassembly.
Disassembly is the process of the systematic removal of
desirable constituents (components and/or materials) from
the original assembly so that there is no impairment to any
useful constituent. Disassembly can be selective (product
not fully disassembled) or complete (product fully disas-
sembled), and may use a methodology that is destructive
(focusing on materials rather than components recovery)
or non-destructive (focusing on components rather than
materials recovery). Disassembly operations are very
complex, time-consuming and expensive. Recent books by
Lambert and Gupta [13] and McGovern and Gupta [17] can
be helpful in understanding the general area of disassembly.

As mentioned before, EOL processing often necessitates
a certain level of disassembly (an expensive process due to
its labor-intensive nature). Hence, finding an efficient disas-
sembly sequence is necessary. In addition, the complexity
of determining the best disassembly sequence increases as
the number of parts of a product grows. In fact, this prob-
lem has been proven to be NP complete [16]. Thus, not
only an efficient methodology is required for disassembly
sequencing, but also limiting the disassembly operations to
recyclable materials and reusable components in the EOL
product is crucial to making the recovery operations eco-
nomically viable.



2 International Journal of Swarm Intelligence and Evolutionary Computation

In recent years, genetic algorithm (GA) has been gain-
ing popularity for solving combinatorial and NP-complete
problems [11]. GA is a heuristic technique that can provide
a quick and cost effective solution to a problem that would
otherwise take an excessive amount of time to render it prac-
tical. The price one has to pay is in terms of the quality of
solution one gets. Even though by using GA an optimal solu-
tion cannot always be guaranteed, a reasonable (and in many
cases optimal) solution is often obtained. Thus, GA offers a
good compromise for a large class of problems including
disassembly sequencing.

A GA for multi-objective optimization was proposed by
Valenzuela-Rendón and Uresti-Charre [23] who calculated
the fitness of each entity in the population incrementally
based on the degree to which it was dominated or how
close it was to other entities. The behavior of each was
then analyzed with regard to the visited search space, the
quality of the final population attained and the percentage
of non-dominated entities in the population through time.
The authors commented that GA had a stable and reliable
time response. Keung et al. [10] applied a GA approach
to a tool selection problem. In their paper, the overall
objective of the model was to minimize the processing time.
Loughlin and Ranjithan [15] proposed a GA method, to a
so-called neighborhood constraint problem, and concluded
that the GA performed better in multi-objective problems
compared to single objective problems. Lazzerini and
Marcelloni [14] used GA in scheduling assembly processes.
They employed modified partially matched crossover
(PMX) and mutation operations to obtain a near optimal
sequence. The precedence relationships were not considered
in their model.

One of the factors that add to complications in
sequencing problems is precedence relationships. The
conventional search algorithms often use combinatorial
search techniques and then augment them with precedence
relationships. Sanderson et al. [21] considered precedence
relationships in assembly sequence planning in such a
manner. Regular GAs are generally not suitable for the
systems where precedence relationships and constraints are
involved. Seo et al. [22], for example, proposed a genetic
algorithm for generating optimal disassembly sequences
considering both economical and environmental factors.
However, their search could lead to infeasible strings
during the crossover and mutation operations. The authors
addressed that situation by penalizing the string with the
hope that it would be eliminated during latter generations.
However, that turned out to be a weakness in their algorithm.
Bierwirth et al. [3] and Bierwirth and Mattfeld [2] proposed
a methodology to overcome such a problem by introducing
the precedence preservative crossover (PPX) technique
for scheduling problems. The methodology preserves the
precedence relationships during the crossover function of

Figure 1: Disassembly sequencing system definition with
successive EOL flows.

GA. The method guarantees feasible results at each of the
steps. While Bierwirth et al. [3] and Bierwirth and Mattfeld
[2] employed the PPX approach to a single objective job
shop scheduling problem, it works equally well for multiple
criteria modeling [11], where the authors tackled the
complete disassembly problem. However, as was mentioned
above, it is imperative to develop an efficient methodology
by limiting disassembling operations only to recyclable
materials and reusable components in the EOL product so
that the recovery operations are economically viable. To
that end, in this paper, we present a GA-based methodology
to perform selective disassembly of a product. This is
a generalized methodology that not only can determine
sequences for selective disassembly, but it can also do the
same for complete disassembly.

2 Materials and methods

Proposed disassembly sequencing system requires a bill
of materials (BOM), and separate demands for recyclable
materials and reusable components in the EOL product (see
Figure 1). BOM data include fastener type, disassembly
time, and coordinates, and the precedence relationships
in the product structure. After the data is embedded in
the genetic algorithm (GA), the user is prompted for the
type of disassembly operation (viz. selective or complete
disassembly). In the case where complete disassembly is
selected, the EOL product is disassembled completely,
leaving recyclable materials, reusable components and
EOL components behind. If selected disassembly is the
required method, only the items demanded for reuse and
recycling are taken out of the product structure. Since some
of the components must be disassembled due to precedence
relationships regardless of their corresponding demands,
selective disassembly leaves behind an EOL product residue
in addition to the EOL components.



International Journal of Swarm Intelligence and Evolutionary Computation 3

2.1 Nomenclature

The notations used in the rest of the paper are given in the
table below.

Notation Definition
C Conversion constant (s)

chl Length of chromosome

ch Index for chromosome

CT Total penalty for direction change (s)

ctj,seq Penalty for direction change for disassembling component j
in sequence seq (0: if direction change is not
required, 1: if 90 degree change is required, 2: if 180 degree
change is required) (s)

dej,seq Type of demand for component j in sequence seq (s)
(0: if not demanded, 1: if demanded for reuse, 2:
if demanded for recycling)

dtj,seq Time required to disassemble component j in sequence seq (s)

DT Total basic disassembly time till the seqth sequence (s)

F (ch, gn) Fitness value for chromosome ch in generation gn (s)

gn Index for generation

j Index for component

maj,seq Material type of component j in sequence seq (A: Aluminum,
P: Plastic, S: Steel)

MS(ch, gen) Total makespan of chromosome ch in generation gen (s)

MT Total penalty for disassembly method change (s)

mtj,seq Penalty for disassembly method change for disassembling
component j in sequence seq (0: if method change is not
required 1: if method change is required) (s)

n Number of components in the EOL product (unit)

ncr Number of chromosomes in the population (unit)

pop Index for population

rnd Random number (rnd = 1, . . . , 9)

seq Index for disassembly sequence (seq = 1, . . . , 9)

Tseq Cumulative disassembly time after component j in sequence

seq is disassembled (s)

2.2 Disassembly sequence generation for EOL selective dis-
assembly operations

Several metaheuristic applications have been utilized
to solve disassembly sequencing problems, such as expert
systems, simulated annealing, Petri nets and neural networks
[9,12]. In particular, genetic algorithm (GA) is often used
for its capability to evolve towards optimal solution without
processing all the alternatives [6,7].

This paper utilizes a version of genetic algorithm (GA)
to generate feasible sequences for selective disassembly. GA
starts with a set of randomly selected potential solutions
called the population. Each member of the population is
encoded as an artificial chromosome which contains infor-
mation about the solution mapping. A custom fitness func-
tion is designed so that the fitness score of each chromosome
is individually calculated. The chromosomes are evaluated
according to their fitness scores and are iteratively regener-
ated to increase their fitness in the next generation. In every
generation, there is a probability that a mutation will occur
in one or more chromosomes. In addition, crossover, the
exchange of genetic information between two mating chro-
mosomes, may also occur. The selected fittest chromosomes

are further processed. If any of the predetermined termina-
tion conditions is met, the genetic algorithm terminates [4].

Basic structure of a genetic algorithm is as follows
[adopted from [18]]:

gn := 0;
Compute initial feasible random population;
WHILE stopping condition not fulfilled DO
BEGIN

Select individuals for reproduction;
Conduct crossover operations to generate new
individuals;
Conduct mutation operations to mutate some
individuals;
Compute new generation

END

2.3 Elements of genetic algorithm for selective disassembly
sequencing

The bill of materials (BOM) of the EOL product and related
data are provided in Figure 2. The given product consists of
ten components (n = 10) indexed by integers from 0 to 9

(see Figure 3). Therefore, j ∈ {0, 1, . . . , n − 1}. The loca-
tion of each component is defined by its corresponding 3D
coordinates. The methodology used for the disassembly of
each component may be destructive (D) or non-destructive
(N). A component may or may not be demanded. If it is not

Figure 2: EOL product structure, BOM and other data.

Figure 3: Components of the product.



4 International Journal of Swarm Intelligence and Evolutionary Computation

Sequence Method Demand Material F (ch, gn)

0623795418 DDDDNNNNDD rrrruuusrr APCPPAAPAA 28.978

0613275948 DDDDDNNNND rrrrruuusr APAPCPAAPA 29.881

1630824957 DDDDDDNNNN rrrrrrsuuu APPAACPAAP 30.563

0327468195 DDDNNDDDNN rrrusrrruu APCPPPAAAA 30.586

1328047659 DDDDDNNDNN rrrrrsuruu APCAAPPPAA 30.813

· · ·
1385206479 DDDNDDDNNN rrrurrrsuu APAACAPPPA 35.052

0463159827 DNDDDNNDDN rsrrruurru APPPAAAACP 35.137

1342760598 DDNDNDDNND rrsrurruur APPCPPAAAA 35.142

1385476209 DDDNNNDDDN rrrusurrru APAAPPPCAA 35.296

0213657984 DDDDDNNNDN rrrrruuurs ACAPPAPAAP 35.430

Table 1: Initial population.

demanded, it is represented by s. If it is demanded, it may be
demanded for reuse (u) or recycling (r). A component has
one of three types of joints, namely, latch (L), screw (S) or
slot entry (E). In addition, the precedence relationships are
given as follows: components 1 and 2 must be disassem-
bled prior to any other component; component 3 must be
disassembled prior to components 7 and 8; and component
6 must be disassembled prior to component 9.

Chromosomes
GA requires that the solution and parameters be coded into
chromosomes, represented by a combination of numbers,
alphabets and/or other characters, before they can be pro-
cessed. In this study, in order to capture the five variables,
chromosomes are codified in the form of a string consisting
of five ordered sections of equal length, representing the
disassembly sequence, the disassembly method, the demand
type of each component, and the material type of each com-
ponent, respectively. Coordinate data are kept separate from
the chromosome structure to provide ease in calculations.
For instance, in the sample chromosome provided below:

0623795418 DDDDNNNNDD rrrruuusrr APCPPAAPAA

item 3 requires destructive disassembly (D), is demanded for
recycling (r) and is made out of plastic (P).

Initial population
The initial population consists of ncr random chromosomes.
The population preserves the precedence relationships and
other constraints imposed by the product structure. For the
example provided in Figure 2, hundred chromosomes (feasi-
ble solutions) are randomly created to form the initial popu-
lation (ncr = 100). The chromosomes in the initial random
population are provided in Table 1 (only 10 out of 100 are
shown).

Crossover
The proposed algorithm employs the precedence preser-
vative crossover (PPX) methodology for crossover. In this
methodology, in addition to the two strings representing

the chromosomes of the parents (Parent1 and Parent2), two
additional strings pass on the precedence relationship based
on the two parental permutations to two new offsprings
while making sure that no new precedence relationships are
introduced. A vector, representing the number of operations
involved in the problem, is randomly filled with elements of
the set. This vector defines the order in which the operations
are successively drawn from Parent1 and Parent2.

The algorithm starts by initializing an empty offspring.
The leftmost operation in one of the two parents is selected
in accordance with the order of parents given in the vector.
After an operation is selected, it is deleted in both parents.
Finally, the selected operation is appended to the offspring.
This step is repeated until both parents are empty and the
offspring contains all operations involved.

For instance, consider two chromosome strings (Parent1
and Parent2) provided below:

Parent1: 1 4 5 2 6 0 3 8 9 7,

Parent2: 1 5 6 3 0 7 4 9 2 8.

Assuming that the two random masks created from the
above parents are

Mask1: II II II I I II II II I II,

Mask2: II I I II I II II I II II,

the output of the crossover process (viz. Child1 and Child2)
is generated as given below:

Child1: 1 5 6 4 2 3 0 7 8 9,

Child2: 1 4 5 6 2 3 0 8 7 9.

Mutation
The mutation occurs with a pre-determined probability. If
the probability holds, the mutation operator selects a ran-
dom number of genes (rnd = 1, . . . , 9), and exchanges
them in such a way that the same precedence relationships
are preserved. Otherwise, the population remains unchanged
and is copied to the next generation. The mutation operator
proposed in this paper exchanges components 0 and 1. The
rest of the strings remain the same. For instance, assuming
that rnd = 3, the first three chromosomes in the population
mutate (see Table 2).

Fitness evaluation
The fitness function is dependent on the total disassembly
time. There are three factors that contribute to the disas-
sembly time. The first one is basic disassembly time for
component j in sequence seq(dtj , seq). In this paper, dtj,seq

values (in seconds) are given as follows:

j 0 1 2 3 4 5 6 7 8 9

dtj,seq 2 3 3 2 3 4 2 1 3 2



International Journal of Swarm Intelligence and Evolutionary Computation 5

Chromosome number Before mutation After mutation

1 0623795418 1623795408

2 0613275948 1603275948

3 1630824957 0631824957

4 0327468195 0327468195

5 1328047659 1328047659

6 1385206479 1385206479

7 0463159827 0463159827

8 1342760598 1342760598

9 1385476209 1385476209

10 0213657984 0213657984

Table 2: An example of the proposed mutation operation.

The second factor (ctj,seq) is the penalty (in seconds) for
each travel time to disassemble component j in sequence
seq, which is a function of the distance traveled between
the (seq − 1)th and seqth sequences and the robot arm speed
factor (sf ):

ctj,seq =

√
(xj,(seq−1)−xj,seq)2+(yj,(seq−1)−yj,seq)2+(zj,(seq−1)−zj,seq)2

sf
.

The final factor in fitness function is the penalty for dis-
assembly method change (mtj,seq). For each disassembly
method change, the sequence is penalized by 1 second:

mtj,seq =

{
0, if no method change is required (e.g. N to N),

1, if method change is required (e.g. N to D).

The algorithm searches for a “recycling pair” and does
not penalize the sequence if the two adjacent components
are made of the same material and if they are both demanded
for recycling.

Let Tseq denote the cumulative disassembly time after
the disassembly operation in sequence seq is completed for
component j:

Tseq = Tseq−1 + dtj,seq + ctj,seq

+mtj,seq, for seq = 0, . . . , n− 2,

Tseq = Tseq−1 + dtj,seq, for seq = n− 1.

The objective of the GA model is to minimize the
total fitness function (F ) by minimizing (i) the traveled
distance, (ii) the number of disassembly method changes
and (iii) by combining the identical-material components
together, eliminating unnecessary disassembly operations.
Let F (ch, gn) denote the total fitness for chromosome ch
in generation gn. Hence, total time to disassemble all the
components can be calculated as follows:

F (ch, gn) =
n−1∑

seq=0

dtj,seq +
n−2∑

seq=0

ctj,seq

+
n−2∑

seq=0

mtj,seq, ∀j, j = 0, . . . , n− 1.

Selection and regeneration procedure

Following each generation, the chromosomes obtain a cer-
tain expectation depending on their fitness values. A roulette
wheel is then implemented to select the sequence of par-
ents that will be included in the next generation (the higher
the fitness value the higher the chance to be selected). This
method aims at allowing the parents in the current genera-
tion to be selected for the next generation without getting
trapped in the local optima. In addition, a new population is
generated eliminating the weak chromosomes.

Termination

The execution of GA terminates if the number of genera-
tions reaches up to a maximum value (100 in our example).

Remark

The proposed algorithm allows the user to enter his/her deci-
sion regarding selective (partial) or complete disassembly.
In selective disassembly, only the parts that are indicated
by the user are disassembled via the GA algorithm while
complete disassembly would take apart all components in
the bill of materials. Regardless of the selection, the prece-
dence relationships are preserved throughout the disassem-
bly sequence generation. In selective disassembly, there is
no penalty for the components that are not taken out since
the proposed fitness function takes the overall disassembly
time into account and does not consider cost and revenue
measures such as holding cost, and/or storage cost, and so
forth. In addition, regardless of the user selection, the algo-
rithm requires at least three components to be disassembled
for the sequence generation to be valid.

3 Results and discussion

The crossover and mutation probabilities are assumed to be
0.60 and 0.005 respectively for the product structure pro-
vided in Figure 1. Initial population consists of 100 chromo-
somes (ncr = 100). After the GA is run for the case of com-
plete disassembly, only one optimal solution is obtained in
the final population with a fitness function value of 26.0248
seconds (see Figure 4).

It took 73.8821 seconds to determine the optimal solu-
tion using exhaustive search whereas it took only 2.4180

seconds when genetic algorithm was used (see Figure 4).
The genetic algorithm reached the solution at the 6th gen-
eration. The initial solution of 100 chromosomes included
four identical chromosomes, whereas the rest of them were
unique sequences. It is important to note that the optimal
sequence is found in a few iterations even though it was not
present in the initial random population.

The proposed model assumes that the end effector speed
for the robot arm is a constant value of 25 cm/s. In addition,
the time spent for robot arm angle change (for all three
angles) is assumed to be embedded in the disassembly



6 International Journal of Swarm Intelligence and Evolutionary Computation

Figure 4: Matlab screenshot of the complete disassembly
sequencing result.

Figure 5: Matlab screenshot disassembly sequencing result
for the selective disassembly of components 7 and 9.

time for each component. In addition, every component is
assumed to have one joint that connects the component to
the rest of the product structure.

The algorithm is run hundred times to obtain average
computation time. On an average, the optimal solution was
reached in 2.5576 seconds at the 16.56th generation with an
average fitness value of 26.4013 seconds.

The algorithm is coded in Matlab (version 7.7.0.471

(R2008b)) using Genetic Algorithm and Direct Search
Toolbox. The code was run on a computer with a Processor
Intel Core 2 Duo CPU P8400 2.26GHz, 4.00GB RAM.

For the selective disassembly, components 7 and 9
and components 2, 5, 7 and 9 are selected for two partial

Figure 6: Matlab screenshot disassembly sequencing result
for the selective disassembly of components 2, 5, 7 and 9.

disassembly sequences. Figures 5 and 6 depict the results
of these sequences, respectively. For the parts 7 and 9, the
best fitness value (16.7823 seconds) is obtained in the 1st
generation in 0.4992 seconds.

For the parts 2, 5, 7 and 9, the best fitness value (19.7295
seconds) is obtained in the 24th generation in 0.9048 sec-
onds.

The algorithm is then run 100 times for each of the
partial disassembly sequences to obtain the average per-
formance values. The model for generating a disassembly
sequence for only the parts 7 and 9, on an average, took
0.5370 seconds and obtained the optimal solution at the
1.34th generation. The model for generating a disassembly
sequence for only the parts 2, 5, 7 and 9, on an average,
took 0.6117 seconds and obtained the optimal solution at
the 10.83th generation.

These partial disassembly sequencing models did not
include penalty for not disassembling the non-demanded
parts since the fitness value is a function of the overall
disassembly time and does not include any cost/revenue
measures such as holding cost and/or disposal cost.

Several proofs have been developed that describe
the expected convergence time and provide worst-case
and average-case convergence time [1,19,20]. Anken-
brandt [1] demonstrated that, with proportional selection,
GAs have average and worst case time complexity in
O(O(Evaluate(X)) ∗m log(m)

log(r) ), where m is the population
size, r is the fitness ratio (the average fitness of a
chromosome over the average fitness function of all other
chromosomes in the generation), and “Evaluate” represents
the combined domain-dependent evaluation and decoding
functions of the chromosome X (complexity of the fitness,
mutation and crossover functions).



International Journal of Swarm Intelligence and Evolutionary Computation 7

The O(Evaluate(X)) is the order of the combined
functions computed in every step. For the fitness function,
it is in the order of O(n ∗ m), where n is the chromosome
length. The crossover function is also in the order of
O(cp∗n∗m), where cp is the crossover probability. Finally,
for the mutation function, since it involves two objects from
the selected chromosome (regardless of the length of the
chromosome), its complexity only depends on the mutation
probability which controls the chromosomes selected for
mutation. Therefore, the mutation complexity is in the order
of O(mp ∗m), where mp is the mutation probability.

When comparing them, it is important to note that, even
though the complexity functions of both selective and com-
plete disassembly sequencing algorithms are identical, due
to the variation of the length of the chromosomes in each
algorithm the computational time will vary.

4 Conclusions

A genetic algorithm model is utilized to obtain economically
and environmentally sustainable disassembly sequences.
The algorithm utilizes BOM data including material, EOL
processing option (reuse, recycle, etc.), fastener type,
disassembly time, and coordinates, and the precedence
relationships in the product structure. The model provides
fast and accurate input for the disassembly scheduling
environments for both complete and selective disassembly.
The GA does not make unrealistic assumptions such
as linearity, convexity and/or differentiability. This adds
further importance to the proposed model and makes it
even more desirable. For the example considered, the
algorithm provided optimal disassembly sequence in a short
execution time. The algorithm is practical, as it is easy to
use, considers the precedence relationships and additional
constraints in the product structure and is easily applicable
to problems with multiple objectives. Future work will
include combining the proposed disassembly algorithm with
sensory-driven automated robotic disassembly applications.

References

[1] C. Ankenbrandt, An extension to the theory of convergence and a
proof of the time complexity of genetic algorithms, in Foundations
of Genetic Algorithms, Morgan Kaufman, 1991, 53–68.

[2] C. Bierwirth and D. C. Mattfeld, Production scheduling and
rescheduling with genetic algorithms, Evolutionary Computa-
tion, 7 (1999), 1–18.

[3] C. Bierwirth, D. C. Mattfeld, and H. Kopfer, On permutation
representations for scheduling problems, in Parallel Problem
Solving from Nature–PPSN IV, H. M. Voigt, W. Ebeling,
I. Rechenberg, and H.-P. Schwefel, eds., vol. 1141 of Lecture
Notes in Computer Science, Springer-Verlag, Berlin, 1996, 310–
318.

[4] A. El-Sayed, E. Kongar, and S. M. Gupta, A genetic algorithm
approach to end-of-life disassembly sequencing for robotic
disassembly, in Proceedings of the 2010 Northeast Decision
Sciences Institute Conference, Alexandria, VA, 2010, 402–408.

[5] A. Gungor and S. M. Gupta, Issues in environmentally conscious
manufacturing and product recovery: A survey, Computers and
Industrial Engineering, 36 (1999), 811–853.

[6] S. M. Gupta and P. Imtanavanich, Evolutionary computational
approach for disassembly sequencing in a multiproduct environ-
ment, Journal Biomedical Soft Computing and Human Sciences,
15 (2010), 73–78.

[7] W. Hui, X. Dong, and D. Guanghong, A genetic algorithm for
product disassembly sequence planning, Neurocomputing, 71
(2008), 2720–2726.

[8] M. A. Ilgin and S. M. Gupta, Environmentally conscious
manufacturing and product recovery (ECMPRO): A review of
the state of the art, Journal of Environmental Management, 91
(2010), 563–591.

[9] J.-G. Kang and P. Xirouchakis, Disassembly sequencing for
maintenance: A survey, Proceedings of the Institution of Mechan-
ical Engineers Part B: Journal of Engineering Manufacture, 220
(2006), 1697–1716.

[10] K. W. Keung, W. H. Ip, and T. C. Lee, The solution of a
multi-objective tool selection model using the GA approach,
International Journal of Advanced Manufacturing Technology,
18 (2001), 771–777.

[11] E. Kongar and S. M. Gupta, Disassembly sequencing using
genetic algorithm, International Journal of Advanced Manufac-
turing Technology, 30 (2006), 497–506.

[12] A. J. D. Lambert, Disassembly sequencing: A survey, Interna-
tional Journal of Production Research, 41 (2003), 3721–3759.

[13] A. J. D. Lambert and S. M. Gupta, Disassembly Modeling for
Assembly, Maintenance, Reuse, and Recycling, CRC Press, Boca
Raton, Florida, 2005.

[14] B. Lazzerini and F. Marcelloni, A genetic algorithm for
generating optimal assembly plans, Artificial Intelligence in
Engineering, 14 (2000), 319–329.

[15] D. H. Loughlin and S. Ranjithan, The neighborhood constraint-
method: A genetic algorithm-based multiobjective optimization
technique, in Proceedings of the Seventh International Confer-
ence on Genetic Algorithms, 1997, 666–673.

[16] S. M. McGovern and S. M. Gupta, Combinatorial optimization
analysis of the unary NP-complete disassembly line balancing
problem, International Journal of Production Research, 45
(2007), 4485–4511.

[17] S. M. McGovern and S. M. Gupta, The Disassembly Line:
Balancing and Modeling, McGraw Hill, New York, 2011.

[18] D. P. Mukhopadhyay, M. O. Balitanas, A. Farkhod, S.-H. Jeon,
and D. Bhattacharyya, Genetic algorithm: A tutorial review,
International Journal of of Grid and Distributed Computing, 2
(2009), 25–32.

[19] B. Rylander and J. Foster, Computational complexity and genetic
algorithms, in Proceedings of the World Science and Engineering
Society’s Conference on Soft Computing, Advances in Fuzzy
Systems and Evolutionary Computation, World Science and
Engineering Society Press, 2001, 248–253.

[20] B. Rylander, T. Soule, and J. Foster, Computational complexity,
genetic programming, and implications, in Proceedings of the
European Genetic Programming Conference, 2001.

[21] A. C. Sanderson, L. S. Homem de Mello, and H. Zhang,
Assembly sequence planning, AI Magazine, 11 (1990), 62–81.

[22] K.-K. Seo, J.-H. Park, and D.-S. Jang, Optimal disassembly
sequence using genetic algorithms considering economic and
environmental aspects, International Journal of Advanced Manu-
facturing Technology, 18 (2001), 371–380.

[23] M. Valenzuela-Rendón and E. Uresti-Charre, A non-generational
genetic algorithm for multiobjective optimization, in Proceedings
of the Seventh International Conference on Genetic Algorithms,
1997, 658–665.


