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Abstract

We compute the noncommutative deformations of a family of modules over the first Weyl
algebra. This example shows some important properties of noncommutative deformation
theory that separates it from commutative deformation theory.

2000 MSC: 14D15; 13D10

1 Introduction

Let k be an algebraically closed field and let A be an associative k-algebra. For any left A-module
M , there is a commutative deformation functor DefM : l → Sets defined on the category l of
local Artinan commutative k-algebras with residue field k. We recall that for an object R ∈ l,
a deformation of M over R is a pair (MR, τ), where MR is an A-R bimodule (on which k acts
centrally) that is R-flat, and τ : MR⊗R k →M is an isomorphism of left A-modules. Moreover,
(MR, τ) ∼ (M ′

R, τ ′) as deformations in DefM (R) if there is an isomorphism η : MR → M ′
R of

A-R bimodules such that τ = τ ′ ◦ (η ⊗ 1).
In [2], Laudal introduced noncommutative deformations of modules. For any finite family

M = {M1, . . . ,Mp} of left A-modules, there is a noncommutative deformation functor DefM :
ap → Sets defined on the category ap of p-pointed Artinian k-algebras. We recall that an object
R of ap is an Artinian ring R, together with a pair of structural ring homomorphisms f : kp → R
and g : R→ kp, such that g ◦ f = id and the radical I(R) = ker(g) is nilpotent. The morphisms
of ap are ring homomorphisms that commute with the structural morphisms.

A deformation of the family M over R is a (p + 1)-tuple (MR, τ1, . . . , τp), where MR is an
A-R bimodule (on which k acts centrally) such that MR

∼= (Mi⊗k Rij) as right R-modules, and
τi : MR ⊗R ki →Mi is an isomorphism of left A-modules for 1 ≤ i ≤ p. By definition,

(Mi ⊗k Rij) = ⊕
1≤i,j≤p

Mi ⊗k Rij

with the natural right R-module structure, and k1, . . . , kp are the simple left R-modules of
dimension one over k. Moreover, (MR, τ1, . . . , τp) ∼ (M ′

R, τ ′1, . . . , τ
′
p) as deformations in DefM(R)

if there is an isomorphism η : MR →M ′
R of A-R bimodules such that τi = τ ′i◦(η⊗1) for 1 ≤ i ≤ p.

There is a cohomology theory and an obstruction calculus for DefM, see Laudal [2] and
Eriksen [1]. We compute the noncommutative deformations of a family M = {M1,M2} of
modules over the first Weyl algebra using the constructive methods described in Eriksen [1].

2 An example of noncommutative deformations of a family

Let k be an algebraically closed field of characteristic 0, let A = k[t], and let D = Diff(A) be
the first Weyl algebra over k. We recall that D = k〈t, ∂〉/(∂ t − t ∂ − 1). Let us consider the
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family M = {M1,M2} of left D-modules, where M1 = D/D · ∂ ∼= A and M2 = D/D · t ∼= k[∂].
We shall compute the noncommutative deformations of the familyM.

In this example, we use the methods described in Eriksen [1] to compute noncommutative
deformations. In particular, we use the cohomology YHn(Mj ,Mi) of the Yoneda complex

Y Cp(Mj ,Mi) =
∏

m≥0

HomD(Lm,j , Lm−p,i)

for 1 ≤ i, j ≤ 2, where (L∗,i, d∗,i) is a free resolution of Mi, and an obstruction calculus based
on these free resolutions. We recall that YHn(Mj ,Mi) ∼= Extn

D(Mj ,Mi).
Let us compute the cohomology YHn(Mj ,Mi) for n = 1, 2, 1 ≤ i, j ≤ 2. We use the free

resolutions of M1 and M2 as left D-modules given by

0←M1 ← D
·∂←− D ← 0, 0←M2 ← D

·t←− D ← 0

and the definition of the differentials Y C0(Mj ,Mi)→ Y C1(Mj ,Mi)→ Y C2(Mj ,Mi) = 0 in the
Yoneda complex, and obtain

YH1(M1,M1) ∼= Ext1D(M1,M1) = 0, YH1(M1,M2) ∼= Ext1D(M1,M2) = k · ξ21

YH1(M2,M1) ∼= Ext1D(M2,M1) = k · ξ12, YH1(M2,M2) ∼= Ext1D(M2,M2) = 0

The base vector ξij is represented by the 1-cocycle given by D
·1−→ D in Y C1(Mj ,Mi) when

i 6= j. Since Y C2(Mj , Mi) = 0 for all i, j, it is clear that YH2(Mj ,Mi) ∼= Ext2D(Mj ,Mi) = 0 for
1 ≤ i, j ≤ 2.

We conclude that DefM is unobstructed. Hence, in the notation of Eriksen [1], the pro-
representing hull H of DefM is given by

H =
(

H11 H12

H21 H22

)
∼=

(
k[[s12s21]] 〈s12〉
〈s21〉 k[[s21s12]]

)

where {sij = ξ∗ij} is a basis of Ext1D(Mj ,Mi)∗ dual to the basis {ξij} of Ext1D(Mj ,Mi) for
(i, j) = (1, 2) and (i, j) = (2, 1). We write 〈s12〉 = H11 · s12 ·H22 and 〈s21〉 = H22 · s21 ·H11.

In order to describe the versal family MH of left D-modules defined over H, we use M-
free resolutions in the notation of Eriksen [1]. In fact, the D-H bimodule MH has an M-free
resolution of the form

0←MH ←
(

D⊗̂kH11 D⊗̂kH12

D⊗̂kH21 D⊗̂kH22

)
dH←−−

(
D⊗̂kH11 D⊗̂kH12

D⊗̂kH21 D⊗̂kH22

)
← 0

where dH = (·∂)⊗̂ei− (·1)⊗̂s12− (·1)⊗̂s21 +(·t)⊗̂e2. This means that for any P, Q ∈ D, we have
that dH(P ⊗ e1) = (P · ∂)⊗̂e1 − (P · 1)⊗̂s21 and dH(Q⊗ e2) = (Q · t)⊗̂e2 − (Q · 1)⊗̂s12.

We remark that there is a natural algebraization S of the pro-representing hull H, given by

S =
(

S11 S12

S21 S22

)
∼=

(
k[s12s21] 〈s12〉
〈s21〉 k[s21s12]

)

In other words, S is an associative k-algebra of finite type such that the J-adic completion
Ŝ ∼= H for the ideal J = (s12, s21) ⊆ S. The corresponding algebraization MS of the versal
familyMH is given by the M-free resolution

0←MS ←
(

D ⊗k S11 D ⊗k S12

D ⊗k S21 D ⊗k S22

)
dS←−

(
D ⊗k S11 D ⊗k S12

D ⊗k S21 D ⊗k S22

)
← 0
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with differential

dS = (·∂)⊗ ei − (·1)⊗ s12 − (·1)⊗ s21 + (·t)⊗ e2

We shall determine the D-modules parameterized by the familyMS over the noncommutative
algebra S — this is much more complicated than in the commutative case. We consider the
simple left S-modules as the points of the noncommutative algebra S, following Laudal [3], [4].
For any simple S-module T , we obtain a left D-module MT =MS⊗S T . Therefore, we consider
the problem of classifying simple S-modules of dimension n ≥ 1.

Any S-module of dimension n ≥ 1 is given by a ring homomorphism ρ : S → Endk(T ), and
we may identify Endk(T ) ∼= Mn(k) by choosing a k-linear base {v1, . . . , vn} for T . We see that
S is generated by e1, s12, s21 as a k-algebra (since e2 = 1− e1), and there are relations

s2
12 = s2

21 = 0, e2
1 = e1, e1s12 = s12, s21e1 = s21, s12e1 = e1s21 = 0

Any S-module of dimension n is therefore given by matrices E1, S12, S21 ∈Mn(k) satisfying the
matric equations

S2
12 = S2

21 = 0, E2
1 = E1, E1S12 = S12, S21E1 = S21, S12E1 = E1S21 = 0

The S-modules represented by (E1, S12, S21) and (E′
1, S

′
12, S

′
21) are isomorphic if and only if there

is an invertible matrix G ∈ Mn(k) such that GE1G
−1 = E′

1, GS12G
−1 = S′12, GS21G

−1 = S′21.
Using this characterization, it is a straight-forward but tedious task to classify all S-modules of
dimension n up to isomorphism for a given integer n ≥ 1.

Let us first remark that for any S-module of dimension n = 1, ρ factorizes through the
commutativization k2 of S. It follows that there are exactly two non-isomorphic simple S-
modules of dimension one, T1,1 and T1,2, and the corresponding deformations ofM are

M1,i =MS ⊗S T1,i
∼= Mi for i = 1, 2

This reflects that M1 and M2 are rigid as left D-modules.
We obtain the following list of S-modules of dimension n = 2, up to isomorphism. We have

used that, without loss of generality, we may assume that E1 has Jordan form:

E1 =
(

0 0
0 0

)
S12 =

(
0 0
0 0

)
S21 =

(
0 0
0 0

)
(2.1)

E1 =
(

1 0
0 1

)
S12 =

(
0 0
0 0

)
S21 =

(
0 0
0 0

)
(2.2)

E1 =
(

1 0
0 0

)
S12 =

(
0 0
0 0

)
S21 =

(
0 0
0 0

)
(2.3)

E1 =
(

1 0
0 0

)
S12 =

(
0 0
0 0

)
S21 =

(
0 0
1 0

)
(2.4)

E1 =
(

1 0
0 0

)
S12 =

(
0 1
0 0

)
S21 =

(
0 0
0 0

)
(2.5)

E1 =
(

1 0
0 0

)
S12 =

(
0 1
0 0

)
S21 =

(
0 0
a 0

)
for a ∈ k∗ (2.6)

We shall write T2,1 – T2,5 and T2,6,a for the corresponding S-modules of dimension two. Notice
that T2,6,a is simple for all a ∈ k∗, while T2,1 – T2,5 are extensions of simple S-modules of
dimension one. In fact, T2,1

∼= T 2
1,2, T2,2

∼= T1,1⊕T1,2 and T2,3
∼= T 2

1,1 are trivial extensions, while
T2,4 is a non-trivial extension of T1,2 by T1,1 and T2,5 is a non-trivial extension of T1,1 by T1,2. The
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deformations ofM corresponding to the simple modules T2,6,a are given by M2,6,a =MS⊗ST2,6,a

for a ∈ k∗. In fact, one may show that M2,6,a
∼= D/D · (t∂ − a) for any a ∈ k∗. In particular,

M2,6,a is a simple D-module if a 6∈ Z, and in this case M2,6,a
∼= M2,6,b if and only if a − b ∈ Z.

Furthermore, M2,6,−1
∼= D/D · ∂ t, M2,6,n

∼= M1 for n = 1, 2, . . . , and M2,6,−n
∼= M2 for

n = 2, 3, . . . .
We obtain the following list of S-modules of dimension n = 3, up to isomorphism. We have

used that, without loss of generality, we may assume that E1 has Jordan form:

E1 =




0 0 0
0 0 0
0 0 0


 S12 =




0 0 0
0 0 0
0 0 0


 S21 =




0 0 0
0 0 0
0 0 0


 (2.1)

E1 =




1 0 0
0 1 0
0 0 1


 S12 =




0 0 0
0 0 0
0 0 0


 S21 =




0 0 0
0 0 0
0 0 0


 (2.2)

E1 =




1 0 0
0 0 0
0 0 0


 S12 =




0 0 0
0 0 0
0 0 0


 S21 =




0 0 0
0 0 0
0 0 0


 (2.3)

E1 =




1 0 0
0 0 0
0 0 0


 S12 =




0 0 0
0 0 0
0 0 0


 S21 =




0 0 0
1 0 0
0 0 0


 (2.4)

E1 =




1 0 0
0 0 0
0 0 0


 S12 =




0 1 0
0 0 0
0 0 0


 S21 =




0 0 0
0 0 0
0 0 0


 (2.5)

E1 =




1 0 0
0 0 0
0 0 0


 S12 =




0 1 0
0 0 0
0 0 0


 S21 =




0 0 0
0 0 0
1 0 0


 (2.6)

E1 =




1 0 0
0 0 0
0 0 0


 S12 =




0 1 0
0 0 0
0 0 0


 S21 =




0 0 0
b 0 0
0 0 0


 for b ∈ k∗ (2.7)

E1 =




1 0 0
0 1 0
0 0 0


 S12 =




0 0 0
0 0 0
0 0 0


 S21 =




0 0 0
0 0 0
0 0 0


 (2.8)

E1 =




1 0 0
0 1 0
0 0 0


 S12 =




0 0 0
0 0 0
0 0 0


 S21 =




0 0 0
0 0 0
0 1 0


 (2.9)

E1 =




1 0 0
0 1 0
0 0 0


 S12 =




0 0 0
0 0 1
0 0 0


 S21 =




0 0 0
0 0 0
0 0 0


 (2.10)

E1 =




1 0 0
0 1 0
0 0 0


 S12 =




0 0 0
0 0 1
0 0 0


 S21 =




0 0 0
0 0 0
1 0 0


 (2.11)

E1 =




1 0 0
0 1 0
0 0 0


 S12 =




0 0 0
0 0 1
0 0 0


 S21 =




0 0 0
0 0 0
0 c 0


 for c ∈ k∗ (2.12)

We shall write T3,1 – T3,6, T3,7,b, T3,8 – T3,11, and T3,12,c for the corresponding S-modules of
dimension three. Notice that all S-modules of dimension three are extensions of simple S-
modules of dimension one and two, so there are no simple S-modules of dimension n = 3.
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In fact, T3,1
∼= T 3

1,2, T3,2
∼= T 3

1,1, T3,3
∼= T1,1 ⊕ T 2

1,2, T3,8
∼= T 2

1,1 ⊕ T1,2, T3,4 = T2,4 ⊕ T1,2,
T3,5
∼= T2,5 ⊕ T1,2, T3,7,b

∼= T2,6,b ⊕ T1,2 for all b ∈ k∗, T3,9
∼= T1,1 ⊕ T2,4, T3,10

∼= T1,1 ⊕ T2,5, and
T3,12,c

∼= T1,1 ⊕ T2,6,c for all c ∈ k∗ are trivial extensions, while T3,6 is a non-trivial extension of
T1,2 by T2,5 and T3,11 is a non-trivial extension of T1,1 by T2,4.

We remark that there are no simple S-modules of finite dimension n ≥ 3. In fact, if T is
a simple S-module, then ρ : S → Endk(T ) is a surjective ring homomorphism. This implies
that Endk(T ) ∼= Mn(k) can be generated by E1 = ρ(e1), S12 = ρ(s12) and S21 = ρ(s21) as a
k-algebra. To see that this is impossible, notice that we may choose a k-base of T such that

E1 =
(

Ir 0
0 0

)
, S12 =

(
0 X
0 0

)
, S21 =

(
0 0
Y 0

)

where 0 ≤ r ≤ n, X is a r × (n − r)-matrix and Y is a (n − r) × r matrix. If r = 0 or r = n,
then X = Y = 0, and this leads to a contradiction, because Mn(k) is not generated by diagonal
matrices when n > 1. Moreover, r ≥ 2 leads to a contradiction, because Mr(k) ⊆Mn(k) is not
generated by Ir and XY . Similarly n−r ≥ 2 leads to a contradiction, because Mn−r(k) ⊆Mn(k)
is not generated by In−r and Y X. We conclude that n = r+(n−r) = 1+1 = 2, a contradiction.

Finally, we remark that the commutative deformation functor DefM : l → Sets of the direct
sum M = M1 ⊕M2 has pro-representing hull (H = k[[s12, s21]],MH), and an algebraization
(S = k[s12, s21],MS). It is not difficult to find the family MS in this case. In fact, for any point
(α, β) ∈ SpecS = A2

k, the left D-module Mα,β = MS ⊗S S/(s12 − α, s21 − β) is given by

M0,0
∼= M1 ⊕M2

Mα,0
∼= D/D · (∂ t) for α 6= 0

Mα,β
∼= D/D · (t ∂ − αβ) for β 6= 0

We see that we obtain exactly the same isomorphism classes of left D-modules as commutative
deformations of M = M1 ⊕M2 as we obtained as noncommutative deformations of the family
M = {M1,M2}. However, the points of the algebraization S of the pro-representing hull of
the noncommutative deformation functor DefM give a much better geometric picture of the
local structure of the moduli space of left D-modules. In fact, the family of left D-modules
parametrized by the points of S contains few isomorphic D-modules, and the simple S-modules
have algebraic properties – such as extensions – that reflect the algebraic properties of the
corresponding D-modules.
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