An Experimental Appraisal on the Efficacy of MWCNT-H2O Nanofluid on the Performance of Solar Parabolic Trough Collector

Harwinder Singh* and Pushpendra Singh
Department of Mechanical, Production and Industrial Engineering, Delhi Technological University, India

Abstract
An application of MWCNT nanoparticles and distilled water was used to prepare the nanofluid and this type of MWCNT based absorbing medium was found to be highly efficient in investigation of the performance of solar parabolic trough collector due to better thermo physical properties (i.e. thermal conductivity) acquired by the MWCNT based nanofluid. In present research study author decided to take volume concentration 0.01% and 0.02% and high quality surfactant Triton X-100 was used to enhance the dispersion quality of nanoparticles in conventional fluid. The test were performed under different volume flow rate conditions of nanofluid i.e. 160 L/h and 100 L/h. Experimental results show that with an incremental change in volume concentration from 0.01% to 0.02%, there is a substantial increment in efficiency of parabolic collector but observed only at 160 L/h.

Keywords: Parabolic trough collector; MWCNT nanofluid; Triton X-100 surfactant; Collector performance testing

Abbreviations
Q : Useful heat gain (Watt); \(Q_u \): Useful heat gain (Watt); \(\dot{m} \): Mass flow rate (Kg/s); \(C_r \): Specific heat of MWCNT nanofluid \(\frac{J}{Kg} \); \(C_b \): Specific heat of base fluid \(\frac{J}{Kg} \); \(t \): Time interval (half an hour); \(D_i \): Internal diameter (m); \(\Delta U \): Overall heat loss coefficient; \(F \): Collector efficiency factor; \(G_r \): Collector heat removal factor; \(G_b \): Total solar intensity \((W/m^2) \); \(T_{min} \): Minimum temperature (K); \(T_{out} \): Outlet temperature (k); \(T_{in} \): Inlet temperature (k); \(W \): Width of collector (m); \(L \): Length of collector (m); \(T \): Total experimental duration; \(D_o \): Outer diameter (m); \(C \): Concentration ratio; \(F_b \): Collector heat removal factor; \(h_f \): Convective heat loss coefficient; \(K_e \): Thermal conductivity \(\frac{W}{m\cdot K} \); \(S \): Absorbed heat flux

Greek symbols
\(\phi \): Weight fraction of MWCNT nano particles in nano fluid; \(\rho \): Density of MWCNT nanofluid \(\frac{Kg}{m^3} \); \(\rho_b \): Density of base fluid \(\frac{Kg}{m^3} \); \(\rho_f \): Density of nano particles \(\frac{Kg}{m^3} \); \(\mu \): Dynamic viscosity of MWCNT nanofluid \(\frac{N\cdot s}{m^2} \); \(\mu_b \): Dynamic viscosity of base fluid \(\frac{N\cdot s}{m^2} \); \(\nu_f \): Kinematic viscosity of MWCNT nanofluid \(\frac{m^2}{s} \); \(\nu_b \): Kinematic viscosity of base fluid \(\frac{m^2}{s} \); \(E_i \): Instantaneous energy production; \(\eta_{th} \): Thermal efficiency; \(\eta_{tot} \): Overall thermal efficiency

Introduction
Parabolic trough collector is a prominent way to convert solar radiations into solar thermal energy and transfer this heat or thermal energy to working fluid for purpose of electric power generation. These days solar energy devices are in use widely and enhancement in performance of solar device are very necessary due to purpose of decrease down the effect of environmental pollutants released from conventional methods. From the last two decades scientists gave effort to improve the performance of solar parabolic trough collector and thermal storage systems for achievement of maximum power and there was a performance booster comes after the discovery of nanoparticles. Application of nanoparticles in conventional fluid also become a new approach to enhance the thermo physical properties of working fluid and among other nanoparticles, MWCNTs possess better thermal, mechanical and optical characteristics and MWCNTs based nanofluid as a working fluid has an capability to enhance the outcome of solar thermal devices. Suspension of metallic and non metallic particles in base fluid is simply known by nanofluid and this term is originated and investigated by Haddad and it has also been seen that nanofluid attain higher dispersion quality as comparison to microfluid [1]. Due to hydrophobic nature, MWCNT nanoparticles have poor dispersion quality in base fluid and stability of nanoparticles in base fluid can be increased with the help of surfactant, which has both hydrophobic and hydrophilic functional groups [2]. Davis et al. evaluate the shear thinning behavior in the viscosity of CNT nanofluid and they found that viscosity of CNTs based nanofluids is function of concentration of nanoparticles in base fluid. He also concluded that with increase in concentration of CNTs, interactions between nanotubes with each other increases and which results in movement between tubes will be stopped [3]. Ding et al. study about the heat transfer process with nano fluid containing CNTs and results concluded that carbon nano tubes enhance the heat convection coefficient as comparison to total enhancement in thermal conductivity. The reason behind more enhancements in heat convection coefficient is high aspect ratio of using CNTs [4]. Lotfi et al. studied experimentally that heat transfer can be enhanced due to presence of MWCNT nanoparticles in water as comparison to simple water and enhanced heat transfer due to MWCNT and water based nanofluids used in horizontal shell and heat exchanger applications [5]. Yousefi et al. evaluate the effect of MWCNT nanofluid on the efficiency of flat plate collector with different mass flow rate of nanofluid 0.0167 to 0.05 kg/s and also with decided weight fraction of CNTs was 0.2% and 0.4%, he concluded an substantial

*Corresponding author: Harwinder Singh, Department of Mechanical, Production and Industrial Engineering, Delhi Technological University, Delhi College of Engineering, Shahbad Daulatpur, Main Bawana Road, Delhi 110042, India, Tel: +91-7503678148; E-mail: harrymehrok14@gmail.com
Received November 25, 2015; Accepted December 28, 2015; Published January 01, 2016

Copyright: © 2016 Singh H, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
increase in efficiency with surfactant at 0.2% MWCNT nanofluid, while an incremental change in efficiency was observed at 0.4% MWCNT nanofluid without surfactant [6]. Kasaean et al. conducted an experimental study on solar trough collector with the application of MWCNT at decided volume concentration 0.2% to 0.3% in mineral oil and he concluded that 4-5% and 6-7% enhancement in efficiency with MWCNT and mineral oil based nanofluid as comparison to pure oil [7]. Yousefi et al. studied experimentally that effect of Al₂O₃ nanofluid on flat plate collector with different mass flow rates 1, 2 and 3L/min and he concluded that 28.3% enhancement in efficiency at 0.2% weight fraction of nanoparticles along with 15.63% efficiency enhancement with the application of surfactant Triton X-100 due to enhancement in heat transfer [8].

Experimentation & Data Findings

Nanomaterial

In this experimental study high class MWCNT nanoparticles (97% purity) with 20-40nm in diameter were obtained from Nano Green Technologies LLP (India). The Triton X-100 was used to achieve high quality dispersion of MWCNT in distilled water as base fluid for investigation and it is non-ionic natural surfactant (Table 1).

The SEM (Scanning Electron Microscopy) image of MWCNT nanoparticles produced by secondary electron at different resolution and magnification is shown in (Figures 1 and 2).

Preparation of nanofluid

MWCNT with 0.01% and 0.02% volume concentration used in distilled water and Triton X-100 surfactant was used in sufficient amount to avoid aggregation and instability between nanotubes, which results in better dispersion behavior. BRANSON 3510 Sonication device followed by magnetic stirrer was used for homogeneous mixing of MWCNT particles in distilled water. Sonication time also affect to dispersion behavior and corresponding thermal properties of carbon nanotubes and after going through several literature study in this field, the soniacton time was decided 45 minutes for mixture amount of 2 liters. Surfactant Triton X-100 due to its non ionic nature showed better dispersion quality for MWCNTs based suspension among other surfactants. Proper dispersion of carbon nanotubes in base fluid is not easy to maintain so that surfactant like Triton X-100 is necessary for better dispersion. It has been seen that Triton X-100 has acquired benzene ring in structure and absorb to graphitic surface in very strong manner due to π-π stacking type interactions [6]. In this experimental study Triton X-100 is used almost same in amount as calculated for MWCNT in base fluid after going through many research discussions. Surfactant is used to bring single phase in solution used as working fluid and fig showed MWCNT based nanofluid contain Triton X-100 with it for proper suspension of MWCNTs throughout experimental span (Figure 3).

Experimental methodology

<table>
<thead>
<tr>
<th>Item Description (MWCNTs)</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purity</td>
<td>> 97%</td>
</tr>
<tr>
<td>Length of Nanotubes</td>
<td>1-10 micrometer</td>
</tr>
<tr>
<td>No. of Walls</td>
<td>3-15</td>
</tr>
<tr>
<td>Density</td>
<td>0.15-0.35g/cm³</td>
</tr>
<tr>
<td>Surface Area</td>
<td>350 m²/g [9]</td>
</tr>
<tr>
<td>Specific Heat</td>
<td>630 J/Kg·K [9]</td>
</tr>
<tr>
<td>Thermal conductivity</td>
<td>1500 W/m·K [9]</td>
</tr>
</tbody>
</table>

Table 1: Properties of MWCNT nanoparticles.

The parabolic trough collector was experimentally tested at Thapar University (Punjab). The parabolic trough collector has a copper receiver tube in which working fluid is flowing and gets heated at outlet. Temperatures measure at inlet and outlet through thermocouples and flow in piping and receiver was forced convection due to electric pump with 18W capacity used at inlet side. Collector system also has a storage tank with certain 8L capacity and ball valve was used at inlet side after pump to control the volume flow rate of working nanofluid in solar concentrating collector system. Storage tank and piping system was fully insulated through glass wool and aluminium foil insulation to prevent heat loss from the solar system. Total solar heat flux throughout the day was measured by solar power meter (Tenmars TM-207) and also flowing wind speed was measured by CFM/CMM vane anemometer (PRECISE AM804). Temperatures at inlet and outlet was measured after half an hour as decided before initializing the experimental work and experimental readings were taken from forenoon 9:30 am to afternoon 3:00 pm according to Indian standard time (Table 2 and Figure 4).
Here ρ_{nf} & ρ_{np} is the density of nanofluid and nanoparticles. Instantaneous energy production is directly proportional to useful heat gain and is described as below:

$$E_i = \frac{Q_{in}}{G_i R_i W L}$$

Here G_i is total solar intensity W/m^2 and R_i is bond resistance is taken as constant. Further thermal and overall thermal efficiency of solar parabolic trough collector is discussed in following equations:

$$\eta_{th} = \frac{mC_{nf}(T_{max} - T_{mini})}{A_{aperture}GT}$$

Here η_{th} is thermal efficiency of parabolic collector and further G_T and t is total solar intensity (W/m^2) and time interval (half an hour).

$$\eta_{ot} = \frac{mC_{nf}(T_{max} - T_{mini})}{A_{aperture}GT}$$

Here η_{ot} is overall thermal efficiency of parabolic collector and further G_{avg} and ‘T’ is average solar intensity (W/m^2) and total test time period for experimental work.

Also collector efficiency factor (F) and heat removal factor (F_R) of collector system is discussed below:

$$F = \frac{D_i h_f}{D_i h_f + D_O U_i}$$

$$F_R = \frac{\mu_C p}{\delta D_O U_i} (1 - \exp(-\frac{F \pi D_O U_i L}{\mu_C p}))$$

This equation almost matches with Hottel-Whillier-Bliss equation of flat plate collector. Here ‘h’ is convective heat transfer coefficient & ‘F_R’ is an important design parameter because it is measure of the thermal resistance comes in the path of absorbed solar radiation in reaching the collector fluid. In equation ‘F_R’ is a negative efficiency parameter and it has negative effect on useful heat gain further effect encountered on instantaneous efficiency of collector, which is defined by the ratio of useful heat gain to the incident radiation coming on the solar collector.

Thermophysical properties of MWCNT nanofluid and water

Thermal properties like thermal conductivity and viscosity of water was calculated through various experimental test runs on KD2 Pro conductivity meter and kinematic viscometer with different temperature. Experimentally measured density of water was found almost equivalent to standard density of water, therefore standard value of density was considered for research work. All experimental and standard results were used to calculate the thermophysical properties of MWCNT based nanofluid for both 0.01% and 0.02% weight fraction (Tables 3 and 4).

Results and Discussion

MWCNT based nanofluid used as working fluid

In this present study nanofluid was prepared at 0.01% and 0.02% of MWCNT in distilled water as base fluid with the application of Triton X-100 surfactant in appropriate amount. Prepared nanofluids
Effect of inlet temperature and mass flow rate

Inlet temperature of fluid has considerable effect on collector performance, when inlet temperature of fluid is increasing results in surface temperature of absorber tube and convective losses from absorber tube are also increases. These losses are increases continuously with change in day time and have a negative effect on collector performance as described for flat plate collector case. Parabolic trough collector is a type of concentrating collector and used to produce high temperature, which means that thermal radiations are important for evaluation of thermal losses and are temperature dependent.

Table 5: \(F_{R}U_{l} \) for parabolic trough collector with 0.01% MWCNT nanofluid.

<table>
<thead>
<tr>
<th>Different volume flow rate</th>
<th>(F)</th>
<th>(F_{R})</th>
<th>(F_{R}U_{l})</th>
</tr>
</thead>
<tbody>
<tr>
<td>160 L/h</td>
<td>0.975439</td>
<td>0.97178</td>
<td>12.9052</td>
</tr>
<tr>
<td>100 L/h</td>
<td>0.858655</td>
<td>0.85422</td>
<td>11.3440</td>
</tr>
</tbody>
</table>

As shown in the table, the thermal efficiency at 100 L/h was 6.39% measured during the time interval 10:30-11:00 am. \(F_{R} \) at 100 L/h. For water is 0.854262 kg m^-3 sec^-1, which means that thermal radiations are important for evaluation of thermal losses and are temperature dependent.

Table 6: \(F_{R}U_{l} \) for parabolic trough collector with 0.02% MWCNT nanofluid.

<table>
<thead>
<tr>
<th>Different volume flow rate</th>
<th>(F)</th>
<th>(F_{R})</th>
<th>(F_{R}U_{l})</th>
</tr>
</thead>
<tbody>
<tr>
<td>160 L/h</td>
<td>0.975437</td>
<td>0.97178</td>
<td>12.9052</td>
</tr>
<tr>
<td>100 L/h</td>
<td>0.8586919</td>
<td>0.85422</td>
<td>11.3440</td>
</tr>
</tbody>
</table>

Water showed higher value of \(F_{R} \) at 160 L/h as comparison to \(F_{R} \) at 100 L/h. Basically a heat removal factor is defined by the heat lost from the collector system and collector efficiency factor is completely opposite to heat removal factor, it means that how much heat absorbed by the collector system and denoted by ‘F’. Thermal losses from the receiver tube can calculate through loss coefficient ‘U’ and it depends upon area of receiver tube. Collector efficiency factor and loss coefficient can be calculated from similar expression as described for flat plate collector case. Parabolic trough collector is a type of concentrating collector and used to produce high temperature, which means that thermal radiations are important for evaluation of thermal losses and are temperature dependent.

Effect of inlet temperature and mass flow rate

Inlet temperature of fluid has considerable effect on collector performance, when inlet temperature of fluid is increasing results in surface temperature of absorber tube and convective losses from absorber tube are also increases. These losses are increases continuously with change in day time and have a negative effect on collector performance as described for flat plate collector case. Parabolic trough collector is a type of concentrating collector and used to produce high temperature, which means that thermal radiations are important for evaluation of thermal losses and are temperature dependent.
increasing coefficient of heat transfer increasing, which results in incremental change occur in collector efficiency factor and collector heat removal factor also increased as shown in Tables 5 and 6 for MWCNT nanofluid and also same behavior shown in Table 7 for water.

Conclusion

In this experimental study effect of MWCNT nanofluid on solar parabolic trough collector performance was investigated. The effect of mass flow rate of MWCNT nanofluid mixture containing Triton X-100 at different weight fraction 0.01% and 0.02% was studied. The results showed that 0.02% MWCNT nanofluid possess highest value
increased by increasing the mass flow rate of fluid was measured in this experimental study, which results in incremental change occur in efficiency.

Acknowledgement

I am very thankful to Mr. Kundan Ial, Assistant professor of Thapar University for allow me to conduct the experimental work on prototype of PTC system and I am also very grateful for his guidance and support enabled throughout my experimental procedure.

References