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Abstract                                                                                                                                                                                                                    
The special class of a nonlinear mathematical programming 
problem which is addressed in this paper has a structure 
characterized by a subset of variables restricted to assume 
discrete values, which are linear and separable from the 
continuous variables. The strategy of releasing non-basic 
variables from their bounds, combined with the “active 
constraint” method and the notion of super-basics, has been 
developed for efficiently tackling the problem. After solving the 
problem by ignoring the integrality requirements, this strategy is 
used to force the appropriate non-integer basic variables to 
move to their neighborhood integer points. A study of criteria 
for choosing a non-basic variable to work with in the integer 
zing strategy has also been made. Successful implementation of 
these algorithms was achieved on various test problems. The 
results show that the proposed integer zing strategy is promising 
in tackling certain classes of mixed integer nonlinear 
programming problems. 
 
Keywords: Mixed integer programming, nonlinear 

programming, direct search, neighbourhood 
search, large scale optimization. 

 
1. Introduction 
Mixed Integer Nonlinear Programming (MINLP) refers to 
mathematical programming with continuous and discrete 
variables and nonlinearities in the objective function and 
constraints. The special class of Mixed-Integer nonlinear 
programming problem which is addressed in this paper is to 
assume discrete values, which are linear and separable from the 
continuous variables. This problem is defined by the following 
model. 
 

 (1) 
s.t.  (2) 
  (3) 
  (4) 

Where  and ,  are continuous 
and generally well-behaved functions defined on the n-
dimensional compact polyhedral convex set 

  

is a discrete set, say the nonnegative integer points of some 
convex polytope, where for most applications Y is the unit 
hypercube .  and  are respectively 
matrices and vectors of comfortable dimensions; the vectors are 
column vectors unless specified otherwise.  
There are various applications for the MINLP model, including the 
process industry and the financial, engineering, management 
science and operations research sectors. It includes problems in 
process flow sheets, portfolio selection, batch processing in 
chemical engineering (consisting of mixing, reaction, and centrifuge 
separation), and optimal design of gas or water transmission 
networks. Other areas of interest include the automobile, 
aircraft, and VLSI manufacturing areas. An impressive 
collection of MINLP applications can be found in [9] and [10]. 
The needs in such diverse areas have motivated research and 
development in MINLP solver technology, particularly in 
algorithms for handling large-scale, highly combinatorial and 
highly nonlinear problems. 
Methods for solving MINLPs include innovative approaches 
and related techniques taken and extended from MIP, such as, 
Outer Approximation (OA) methods [5,7,10], Branch-and-
Bound (B&B) [1,11,16], Extended Cutting Plane methods [19], 
and Generalized Bender’s Decomposition (GBD) [8] for solving 
MINLPs have been discussed in the literature since the early 
1980’s. These approaches generally rely on the successive 
solutions of closely related NLP problems. For example, B&B 
starts out forming a pure continuous NLP problem by dropping 
the integrality requirements of the discrete variables (often 
called the relaxed MINLP or RMINLP). Moreover, each node of 
the emerging B&B tree represents a solution of the RMINLP 
with adjusted bounds on the discrete variables.  
Heuristic approaches to solving MINLPs include Variable 
Neighbourhood Search [13], automatically tuned variable fixing 
strategies [2], Local Branching [14], feasible neighbourhood 
search [14], Feasibility Pump [3,4,6], heuristics based on 
Iterative Rounding [15]. Recently [12] propose a MINLP 
heuristic called the Relaxed-Exact-Continuous-Integer Problem 
Exploration (RECIPE) algorithm. The algorithm puts together a 
global search phase based on Variable Neighbourhood Search 
[13] and a local search phase based on a MINLP heuristic. In 
heuristic approaches, however, one of the main algorithmic 
difficulties connected to MINLPs is to find a feasible solution. 
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From the worst-case complexity point of view, finding a 
feasible MINLP solution is as hard as finding a feasible 
Nonlinear Programming solution, which is NP-hard [14]. 
Due to the fact that the functions in MINLPs are not smooth, 
therefore in this paper we use a direct search method, known as 
unconstrained optimization techniques that do not explicitly use 
derivatives. More information regarding to direct search method 
in optimization can be found in [19]. 
In this paper we address a strategy of releasing nonbasic 
variables from their bounds, combined with the “active 
constrained” method and the notion of superbasics for 
efficiently tackling a particular class of MINLP problems.  
The rest of this paper is organized as follows. In Section 2 we 
give a brief notion of neighbourhood search.Tthe basic approach 
of the proposed method is presented in Section 3. How to derive 
the proposed method is given in Section 4. The algorithm is 
presented in Section 5. Section 6 addresses a computational 
experience. The conclusions can be found in Section 7.  
 
2. Neighbourhood Search 
It should be noted that, generally, in integer programming the 
reduced gradient vector, which is normally used to detect an 
optimality condition, is not available, even though the problems 
are convex. Thus we need to impose a certain condition for the 
local testing search procedure in order to assure that we have 
obtained the “best” suboptimal integer feasible solution. 
Scarf [18] has proposed a quantity test to replace the pricing test 
for optimality in the integer programming problem. The test is 
conducted by a search through the neighbours of a proposed 
feasible point to see whether a nearby point is also feasible and 
yields an improvement to the objective function. 
Let  be an integer point belongs to a finite set of 
neighbourhood  We define a neighbourhood system 
associated with  that is, if such an integer point satisfies the 
following two requirements 

1.  
2.  

With respect to the neighbourhood system mentioned above, the 
proposed integerizing strategy can be described as follows. 
Given a non-integer component,  of an optimal vector ,  
The adjacent points of  being considered are 

 If one of these points satisfies the constraints 
and yields a minimum deterioration of the optimal objective 
value we move to another component, if not we have integer-
feasible solution. 
Let  be the integer feasible point which satisfies the above 
conditions. We could then say if  implies 
that the point  is either infeasible or yields an inferior 
value to the objective function obtained with respect to . In 
this case  is said to be an “optimal” integer feasible solution 
to the integer programming problem. Obviously, in our case, a 
neigbourhood search is conducted through a proposed feasible 
points such that the integer feasible solution would be at the 
least distance from the optimal continuous solution.       
 
3. The Basic Approach 
Before we proceed to the case of MINLP problems, it is 
worthwhile to discuss the basic strategy of process for linear 
case, i.e., Mixed Integer Linear Programming (MILP) problems. 
Consider a MILP problem with the following form 

      Minimize     (5) 

       Subject to   (6) 
                                       (7) 
                 integer for some   (8) 

A component of the optimal basic feasible vector , to 
MILP solved as continuous can be written as 

( ) ( ) ( )
( )

1 1

         (9)
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Note that, this expression can be found in the final tableau of 
Simplex procedure. If  is an integer variable and we 
assume that  is not an integer, the partitioning of  into the 
integer and fractional components is that given 

              (10)          
suppose we wish to increase  to its nearest integer, 

. Based on the idea of suboptimal solutions we may 
elevate a particular non-basic variable, say , above its 
bound of zero, provided , as one of the element of the 
vector , is negative. Let  be amount of movement of the 
non variable , such that the numerical value of scalar 

 is integer. Referring to Eqn. (9),  can then be 
expressed as  

 
while the remaining nonbasic stay at zero. It can be seen that 
after substituting (10) into (11) for  and taking into 
account the partitioning of  given in (10), we obtain 

 
Thus,  is now an integer 
It is now clear that a non-basic variable plays an important role 
to integrate the corresponding basic variable. Therefore, the 
following result is necessary in order to confirm that must be a 
non-integer variable to work with in integer zing process. 
 
Theorem 1: Suppose the MILP problem (5)-(8) has an optimal 
solution, then some of the non-basic variables. 

, must be non-integer variables. 
Proof: 
Solving the problem as continuous slack variables (which are 
non-integer, except in the case of equality constraint) If we 
assume that the vector of basic variables consists of all the slack 
variables then all integer variables would be in the non-basic 
vector  and therefore integer valued. 
 
4. Derivation of the method 
It is clear that the other components, , of vector  will 
also be affected as the numerical value of the scalar  
increases to . Consequently, if some element of vector , 
i.e.,  for , are positive, then the corresponding element 
of  will decrease, and eventually may pass through zero. 
However, any component of vector x must not go below zero 
due to the non-negativity restriction. Therefore, a formula, 
called the minimum ratio test is needed in order to see what is 
the maximum movement of the non-basic is  such that all 
components of x remain feasible. This ratio test would include 
two cases. 
1. A basic variable  decreases to zero (lower bound)  

2. The basic variable,  increases to an integer. 
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Specifically, corresponding to each of these two cases above, 
one would compute 

 
                                            (13) 

How far one can release the nonbasic  from its bound of 
zero, such that vector  remains feasible, will depend on the 
ratio test  given below 

                         (14) 
obviously, if , one of the basic variable  will hit 
the lower bound before  becomes integer. If , the 
numerical value of the basic variable  will be integer and 
feasibility is still maintained. Analogously, we would be able to 
reduce the numerical value of the basic variable  to its 
closest integer . In this case the amount of movement of a 
particular non-basic variable, , corresponding to any 
positive element of vector , is given by 

 
In order to maintain the feasibility, the ratio test θ* is still 
needed. Consider the movement of a particular non-basic 
variable, , as expressed in Eqns.(11) and (15). 
The only factor that one needs to calculate is the corresponding 
element of vector α. A vector  can be expressed as 

                   (16) 
Therefore, in order to get a particular element of vector  we 
should be able to distinguish the corresponding column of 
matrix . Suppose we need the value of element , letting 

 be the -th column vector of , we then have 
                             (17) 

Subsequently, the numerical value of αkj* can be obtained from 
                              (18) 

in Linear Programming (LP) terminology the operation 
conducted in Eqns. (17)  and (18) is called the pricing operation. 
The vector of reduced costs  is used to measure the 
deterioration of the objective function value caused by releasing 
a nonbasic variable from its bound. Consequently, in deciding 
which nonbasic should be released in the integer zing process, 
the vector  must be taken into account, such that deterioration 
is minimized. Recall that the minimum continuous solution 
provides a lower bound to any integer-feasible solution. 
Nevertheless, the amount of movement of particular non-basic 
variable as given in Eqns. (11) or (15), depends in some way on 
the corresponding element of vector . Therefore it can be 
observed that the deterioration of the objective function value 
due to releasing a non-basic variable  so as to integer rize 
a basic variable  may be measured by the ration 

 

where  means the absolute value of scalar a. 
In order to minimize the detonation of the optimal continuous 
solution we then use the following strategy for deciding which 
non-basic variable may be increased from its bound of zero, that 
is,  

 

From the “active constraint” strategy and the partitioning of the 
constraints corresponding to basic , superbasic  and 
nonbasic  variables we can write 

 
or 

 
  

The basis matrix  is assumed to be square and nonsingular, we 
get 
                              (24) 
Where 
  (25) 
  (26) 
  (27) 
Expression (23) indicates that the non-basic variables are being 
held equal to their bound. It is evident through the “nearly” 
basic expression of Eqn. (24), the integer zing strategy discussed 
in the previous section, designed for MILP problem can be 
implemented. Particularly, we would be able to release a non-
basic variable from its bound, Eqn.(23) and exchange it with a 
corresponding basic variable in the integer zing process, 
although the solution would be degenerate. Furthermore, the 
Theorem (1) above can also be extended for MINLP problem. 
 
Theorem 2: Suppose the MINLP problem has a bounded 
optimal continuous solution, then we can always get a non-
integer   in the optimum basic variable vector. 
Proof: 
1. If these variables are non-basic, they will be at their bound. 

Therefore they have integer value. 
2. If  is super-basic, it is possible to make  basic and bring 

in a non-basic at its bound to replace it in the super-basic.  
However, the ratio test expressed in (14) cannot be used as a 
tool to guarantee that the integer solution optimal found gill 
remains in the feasible region. Instead, we use the feasibility test 
from Minos in order to check whether the integer solution is 
feasible or infeasible. 
 
4.1. Pivoting 
Currently, we are in a position where particular basic variable, 

 is being integer zed, thereby a corresponding non-basic 
variable, , is being released from its bound of zero. 
Suppose the maximum movement of  satisfies 

 
such that  is integer valued to exploit the manner of 
changing the basis in linear programming, we would be able to 
move  into  (to replace ) and integer-valued  
into S in order to maintain the integer solution. We now have a 
degenerate solution since a basic variable is at its bound. The 
integer zing process continues with a new set . In this case, 
eventually we may end up with all of the integer variables being 
super-basic. 
 
Theorem 3: A suboptimal solution exists to the MILP and 
MINLP problem in which all of the integer variables are super-
basic. 
Proof: 
1. If all of the integer variables are in N, then they will be a 

bound. 
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2. If an integer variable is basic it is possible to either 

• Interchange it with a super-basic continuous variable, or 
• Make this integer variable super-basic and bring in a 

non-basic at its bound to replace it in the basis which 
gives a degenerate solution. 

The other case which can happen is that different basic variables 
 may hit its bound before  becomes integer. Or in 

other words, we are in a situation where 
 

In this case we move the basic variable   into  and its 
position in the basic variable vector would be replaced by non-
basic . Note  is still a non-integer basic variable 
with a new value. 
 
5. The Algorithm 
After solving the relaxed problem, the procedure for searching a 
suboptimal but integer-feasible solution from an optimal 
continuous solution can be described as follows. 
Let    
be the (continuous) solution of the relaxed problem,  is the 
integer component of non-integer variable  and    is the 
fractional component. 
Stage 1. 
Step 1. Get row  the smallest integer infeasibility, such that  

  
Step 2. Calculate  
  
 this is a pricing operation 
Step 3. Calculate  
 With  corresponds to  

  
 I.  For non-basic j at lower bound 

  If  and  calculate 

 
  If  and calculate 

 
  If   and  calculate  

 
  If  and  calculate  

 
 II. For non-basic j at upper bound 

  If   and  calculate  

 
  If   and  calculate  

 
  If   and  calculate  

 
  If  and  calculate  

 

 Otherwise go to next non-integer non-basic or super-
basic  (if available). Eventually the column  is to be 
increased form LB or decreased from UB. If none go to 
next . 

Step 4. Calculate 
   
 i.e. solve  for  
Step 5. Ratio test; there would be three possibilities for the 

basic variables in order to stay feasible due to the 
releasing of non-basic  from its bounds. 

 If   lower bound 
 Let  

 
 

 
 the maximum movement of  depends on:  

 
 If   upper bound 
 Let   

 
 

      
 the maximum movement of  depends on:  
  
Step 6. Exchanging basis for the three possibilities 

 1.  If  or  becomes non-basic at lower bound  

 becomes basic (replaces ) 
•   stays basic (non-integer) 

2.  If  or  becomes non-basic at upper bound 
 

 becomes basic (replaces ) 
•  stays basic (non-integer) 

 3.  If  or  
•  becomes basic (replaces ) 
•  becomes super-basic at integer-valued 

Step 7.   If row  go to Stage 2, otherwise 
 Repeat from step 1. 
Stage 2. Adjust integer feasible super-basics using line search 

approach. 
The super-basics can be varied at some points subject 
to preserving of the basic variables. Thus a search 
through the neighborhood system, as defined in Section 
2, will verify the (local) optimality of the integer-
feasible solution obtained. 
Define  as the index of the super-basic variable with 
the smallest fractional component, and  is the index 
set of the basic variable. The integer  line search would 
proceed as follows. 
Step 1. This is basically a one dimensional steepest 

descent. 
Choose . The criterion for selecting  
will be that of maximum reduced cost . 
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Step 2. Calculate . Also determine direction of 
move – check sign of . and adjust the unit 
tests in Step 3 in light of this. 

Step 3. Check that a unit move is possible: 
 

       

                
Step 4. Move by 1 unit; check that objective 

improves, i.e. search in the neighbourhood 
system. 

 
6. Computational Experience 1: A Process System Synthesis 

Problem 
Mathematical Statement of the problem 
This synthesis problem is the one of simultaneously determining 
the optimal structural and operating parameters for a process so 
as to satisfy a given design specification. The decision variables 
are defined as follows. 

 is a binary variable which is associated with each process 
unit (piece of equipment) to     denote its potential existence 
in the final optimal configuration, and  

  are the continuous which represent process parameters such 
as flow rates of materials. 

Generally, the objective is to minimize the annual costs, 
including both investment and operation costs. 
Minimize 

 
  
  

  
  
  
Subject to   
  

 

 

 
  
  
  
  
  
  
  
  
  
  

  
  
  
  
  
  
  
 

 
 

 and integer for  
 

 
 

The above formulation contains 8 binary variables, 9 bounded 
continuous variables, 23 inequality constraints. Nonlinearities 
appear in the objective function and in four inequalities. 
 
Discussion of the results 
We solved this problem using PC with processor Intel(R) Core 
(TM) i5-2300 CPU @ 280 GHZ and RAM 4.00GB. The 
continuous optimal solution was obtained by using NLP 
software. Only one binary variable is integer-valued (at its lower 
bound) in the continuous solution. A binary variable  is in 
super-basic set with non integer value. We then moved this 
variable to its closest integer by using truncation strategy and 
kept it super-basic. We must check the feasibility of the 
corresponding basic variables due to this movement. We integer 
zed the remaining non-integer binary variables by using our 
proposed integer zing strategy. Both the continuous and the 
integer results of the synthesis problem can be seen in the Table 
1. 

Table 1.  The Results of the Ssynthesis Problem. 
Variable Activity in Activity after 

  Cont.Soln. integ. Process 

  1.90293   0.0 

  2.0   2.0 

  0.52752  0.46784  

  0.65940  0.58480  

  2.0  2.0  

  1.08333  0.0  

  0.65940  0.0  

  0.41111  0.26667  

  0.0  0.58480  

  0.57055  0.0  

  0.42945  1.0  

  0.06594  0.0  

  0.30833  1.0  

  0.0  0.0  

  0.2 1.0  

  0.10833  0.0  
  0.11869  1.0  

Obj. value(F)   15.08219  68.00974  
 
Our objective result is in agreement with the result obtained by 
[2] . 
 
7. Computational Experience 2:  A planning Problem  for 

Positioning a New Product a Multiattribute Space 
This is a marketing problem faced by a firm which wishes to 
position a new brand product in an existing product class. It is 
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natural that individual choices for his/her most prefered 
products are influenced essentially by the perceptions and 
values of the products (e. g. the design of the product). 
Individuals usually differ in their choice of an object out of an 
existing set, and they would also differ if asked to specify an  
ideal object. Due to these differences, the aim of the problem 
considered here is to optimally design a new product in order to 
attract the largest number of consumers 
 
Mathematical Statement of the Problem 
The mathematical programming formulation of the problem is 
due to Duran and Grossmann [5].  
Let be the number of consumers who are a representative 
sample of the common population for a certain price range of a 
product class. Also, let  be the number of an existing product 
(e. g. different brands of cars) in a market which are evaluated 
by consumers and are located in a multi attribute space of 
dimension . We then define 

  - ideal point on attribute  for the ith consumer, 
 

 - weight given to attribute  by the ith consumer, 
 

  - ideal point on attribute  for the ith consumer, 
 

Further more, a region (hyper ellipsoid) defining the distance of 
each consumers to the ideal point can be determined in terms of 
the existing product,  in a way to produce a formulation such 
that each consumer will select a product which is closest to 
his/her ideal point. It was mentioned above that the objective of 
the problem is to optimally design a new product 

 so as to attract the largest number of 
consumers. 
Duran and Grossmann [5] have extended the scope of the 
positioning problem by introducing the revenue of the firm from 
the new product sales to consumer  as well as a function  
for representing the cost of reaching locations of the new 
product within an attribute space. Now, the objective of the 
problem would be to maximize the profits the firm. The binary 
variable  is introduced for ecah consumer to denote whether 
he/she is attracted by the new product or not. 
Consider a positioning problem in which there are 10 existing 
products , 25 consumers  and attributes . The 
algebraic representation of such a problem can be written as 
follows. 

 
 
Subject to  

 
 

 
 

 
 

 
 
 
 

 
 

where 

 
 

 
 

and  
The data for the coordinates of existing product , ideal 
points  and attribute weights  can be obtained in 
Duran and Grossmann (1986b). 
It can be seen that the above formulation is a MINLP model  
and it containts 25 binary variables, 5 continuous bounded 
variables, 30 inequality constraints (25 of them acting 
nonlinearly) and a nonlinear objective function. 
 
7.1 Discussion of the Result 
We solved the problem on PC with processor Intel(R) Core 
(TM) i5-2300 CPU @ 280 GHZ and RAM 4.00GB. We used 
our Nonlinear Programming  software in order  to get  the 
optimal continuous solution. The results are presented in Tabel 
2.  It can be observed that five binary variables have had integer 
value (all of them are in upper bound). The binary variable  
happens to be a superbasic in the continuous result with non-
integer value. We moved this variable to its closest integer by 
using a truncation strategy and kept  the integer result as 
superbasic. The corresponding  basic variables would be 
affected due to this movement. Therefore it is necessary to 
check the feasibility of the results. The proposed integerizing 
algorithm was then implemented on the remaining non-integer 
binary variables. The integer results can  also be found in Table 
2. 
It is interesting to note that our result  is slightly 
better that Duran and Grossmann’s [5] result . 
The binary variable  has a value of 1.0 in our result instead of 
0.0 as in Duran and Grossmann’s result. The total computational 
time to get the integer result by using our proposed algorithm is 
10.98 seconds. 

 
8. Conclusions 
This paper has presented a direct search method for achieving 
integer-feasibility for a class of mixed-integer nonlinear 
programming problems in a relatively short time. The direct 
search approach used the strategy of releasing nonbasic variable 
from their bounds, combined with the “active constraint” 
method and the notion of superbasic. After solving a problem by 
ignoring the integrality requirements, this strategy is used to 
force the appropriate non-integer basic variables to move to 
their neighborhoods integer points. 
A study of the criteria for choosing a nonbasic variable to work 
with in the integerizing strategy has also been made. The 
number of integerizing steps would be finite if the number of 
integer variables contained in the problem are finite. However, it 
should be noted that the computational time for the integerizing 
process does not necessarily depend on the number of integer 
variables, since many of the integer variables may have an 
integer value at the continuous optimal solution. 
The new direct search method has benn shown to be successful 
on a range of problems, while not always able to achieve global 
optimality. In a number of cases to obtain the suboptimal point 
is acceptable, since the exponential complexity of the 
combinatorial problems in general precludes branch-and-bound, 
except on small to medium problems. 
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Computational testing of the procedure presented this paper has 
demonstrated that it is a viable approach for large problems. 

 
Table 2.  The Results of the Positioning Problem. 

Activity in Activity after Variable 
Cont. Soln. integer. Process 

  2.0   2.0 

  8.0   7.81528 

  7.32849  6.29911  

  3.52381  3.56779  

  4.0  4.0  

  0.93153  1.0  

  0.70970 0.0  

  0.67548  0.0  

  0.50181  0.0  

  0.77537  0.0  

  1.0  1.0  

  0.78191        0.0  

  1.0        1.0  

  0.82922        0.0  

  0.11168       0.0  

  0.81785        0.0  

  0.74375        0.0 
 0.93852       0.0 
 0.61360       0.0 
 1.0 1.0 

 0.69117 0.0 
 1.0 1.0 
 0.91958 0.0 
 0.83079 0.0 
 0.97451 1.0 
 0.93383 0.0 
 0.57154 0.0 
 0.49858 0.0 
 0.91093 0.0 
 1.0 1.0 

Obj.value(F)   16.41964  8.14313  
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