An Overview: Biological Organisms That Serves as Nanofactories for Metallic Nanoparticles Synthesis and Fungi Being the Most Appropriate

Nida Tabassum Khan, Maham Jamil Khan, Jibran Jameel, Namra Jameel and Saad Umer Abdul Rheman

Department of Biotechnology, Faculty of Life Sciences and Informatics, Balochistan University of Information Technology Engineering and Management Sciences, (BUITEMS), Quetta, Pakistan

Abstract

Nanotechnology implies to the manipulation, reduction and fabrication of materials at nano scale. Nanoparticles, exhibiting distinct morphological characteristics which is quite different from their bulk form. Nanoparticles have been produced by industries for commercial application having many benefits. Biosynthesis of nanoparticles attracts many researchers and industries to explore microorganisms such as Bacteria, Fungi, Algae as the perfect biological system for the assembly of different nanoparticles. Fungi being the most suitable as mycosynthesis is not only eco-friendly but also makes the downstream processing for product recovery much easier.

Keywords: Bacteria; Algae; Fungi; Nanoparticles

Introduction

Different metallic nanoparticles are designed by the transformation of their bulk form into nano scale [1], possessing unique properties with various uses in different fields such as biotechnology, nanotechnology, medicine, biochemistry and material engineering etc. [2]. Further many synthetic approaches being used for the fabrication of metallic nanocrystals, bio-based green methods have been established because it is not only environmentally friendly but provides a clean and non-hazardous way for the fabrication of metallic nano sized particles. Bio-based amalgamation of nano particles using microorganisms as nanofactories is an innovative green technology that promises scientific benefits in future [3,4].

Microorganisms as bionanofactories

In recent years nanoparticles have been produced by industries for commercial application having many benefits. Biosynthesis of nanoparticles attracts many researchers and industries to explore microorganisms as the perfect biological system for the production of different nanoparticles. The metabolic activity of these microorganisms enables the extra cellular or intracellular synthesis of nanoparticles utilizing different mode of synthesis [5-8]. Microorganisms possess the capability to minimize the toxicity of metal ions through bio-reduction or by the aggregation of non-soluble complexes with metal ions to produce colloidal particles. In comparison, biologically synthesized nanomaterials are more definite in size than the chemically synthesized ones because of optimized growth of the crystal due to steady reaction kinetics which reduces the overall investment involved in nanoparticle synthesis. Not only reduction in the overall cost makes it less expensive process but also it is an eco-friendly method because it does not apply poisonous chemicals that are expensive and harmful for the environment as used in non-biological synthetic procedures that produces nanoparticles of poor morphology. Therefore nanoparticles of distinct morphology can be obtained through the optimization of culture conditions using biological organisms [9].

An account of organisms responsible for nanoparticle synthesis

Different metal nanoparticles, such as iron, silver, silica, selenium, gold, tellurium, platinum, quantum dots, lead, titanium, zirconium, magnetite, palladium, and silver–gold alloy can be biosynthesised by viruses, bacteria, fungi, plants and actinomycetes [10]. These organisms possess metal ion reduction capabilities thus making them suitable to be employed for synthesis of nanoparticles.

Bacteria in nanoparticle synthesis

Several bacterial species have been reported to produce metallic nanoparticles of different types. For example Bacteria like Desulfuromonas acetoxidans, Shewanella spp and Magnetospirillum magnetotacticum produces iron oxide nanoparticles [11]. In addition Copper and Cadmium sulfate nanoparticles were produce by photosynthetic bacteria of genus Serratia and Rhodobacter sphaeroides respectively [12,13] while Escherichia coli is reported to produce Cadmium nanocrystals [14].

Plants in nanoparticle synthesis

Not only bacteria but plants can also be used to produce nanoparticles of different types. For example from Hordeum vulgare (monocotyledonous) and Rumex acetosa (dicotyledonous) plants, iron oxide nanoparticles were produced [15]. In addition to that, Dioppyros kaki leaf extract is known for the green production of platinum nano crystals [16], gold nanocrystals using Gnidia glauca flower extract [17], silver and gold nano crystals from Aloe Vera extract [18] and clove [19] have been reported.

Algae in nanoparticle synthesis

Chlorella vulgaris, unicellular green algae that possess the capability to produce crystalline metal nanoparticles at room temperature. The hydroxyl groups in tyrosine subunits or the carboxyl groups in

*Corresponding author: Khan NT, Department of Biotechnology, Faculty of Life Sciences and Informatics, Balochistan University of Information Technology Engineering and Management Sciences, (BUITEMS), Quetta, Pakistan, Tel: 03368164903; E-mail: nidadabbassumkhan@yahoo.com

Received March 08, 2017; Accepted April 20, 2017; Published April 26, 2017


Copyright: © 2017 Khan NT, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Fungi in nanoparticle synthesis

From a total of 1.5 million species of fungi found on Earth about seventy thousands species have been documented. According to a recent study it was estimated that nearly 5.1 million fungal species are found on Earth by the use of high-throughput sequencing methods [21]. Selecting Fungi for mycofabrication purposes is the most pertinent choice because of its high metal ion tolerance and bioaccumulation capabilities [22]. Intra or extracellular mycosynthesis of a number of different metallic nanoparticles have been enlisted in Table 1 [23-74].

Why fungi being the most appropriate?

Using fungal biomass or biomass extracts, for the production of nanoparticles is more advantageous compared with other biological methods because fungi, being abundant in nature can be easily isolated by plating, serial dilutions and hyphal extraction. Culturing/sub-culturing requires simple media nutrients and since they are toptopotent therefore spores or hyphae can be used to grow fungus to obtain pure isolate after sub culturing [75, 76]. Besides have the potential to be scaled up for large-scale synthesis by producing large amounts of extracellular enzymes which catalyse the heavy metal ions to produce the respective metallic nanoparticle of definite size and shape. Myco-synthesis offers simple downstream processing for product recovery with easy biomass handling [10], thus making the whole process environmental friendly and cost effective.

Conclusion

Among different biological organisms, Fungi serve as a prime candidate for the production of different nanoparticles because of its high tolerance towards metal ions with reduction capabilities. Above all makes the downstream processing for product recovery easy.

References


