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Introduction
The chemostat is one of the standard models of an open system 

in ecology [1-5]. The monograph of Hsu and Waltman has various 
mathematical methods for analyzing chemostat models [4]. So, it is 
quite natural that it should be used as a model for studying detoxification 
problems. Many authors have studied those models [6-12]. Recently, 
the inhibitor has been introduced in the models for prey - predator 
in chemostat when the prey produces unaffected inhibitor which is 
lethal to neither predator nor nutrient [1]. Moniem [2] has considered 
a model of simple food chain in chemostat when the predator produces 
unaffected inhibitor which is lethal to neither prey nor nutrient.

In this paper, we consider a prey-predator model in chemo stat 
when the predator produces inhibitor. This inhibitor is lethal to the 
prey by results in decrease of growth rate of the predator at some cost 
to its reproductive abilities.

This paper is organized as follows: In the next section, the model 
is presented and some simplifications are achieved. Section 3 deals 
with the existence and local stability of steady states. In section 4, we 
shall provide global analysis, including global stability of the boundary 
steady states and persistence analysis. Discussion, comments and 
numerical simulation are found in final section.

The Model
The interested equations are
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Where s(t), x(t), y(t) and p(t) are the concentration of the nutrient, 
prey, predator and inhibitor at time t respectively. s° denotes the 
input concentration of the nutrient, D denotes the washout rate, and 
the parameter γ represents the coefficient of the interaction between 
the inhibitor and the prey. γi, i=1,2 are the Yield constants. The 
constant k∈(0,1) represents the fraction of potential growth devoted to 
producing the inhibitor [3].

Also we have 1
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mi, i=1,2 are the maximal growth rates, and ai, i=1,2  are the Michaels- 
Menten constants.

Now to perform the usual scaling for the chemostat, let
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Substituting in eqn. 1.1 and dropping the bars, the mathematical 
model will be reduced to the form
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Existence and Local Stability
Let T=s+x+y+p then we have 1 ,T T′ ≤ −  or limsup ( ) 1.

t
T t

→∞
≤  Since 

each component is non-negative, the system in eqn. 1.2 is dissipative 
and thus, has a compact, global attractor. To simplify in eqn. 1.2, let 

,
1
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−
 we find that the system in eqn. 1.2 will take the form
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Clearly z(t)→0 as t→∞ so the system in eqn. (2.1) may be viewed 
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as an asymptotically autonomous system with the following equations 
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The equilibrium point E0=(1,0,0) always exists. If 1<f1(1) then there 
is an equilibrium of in eqn. (2.2) of the form E1=(λs,1-λs,0) where s is 

the unique solution of f1(λs)-1=0. Similarly, if 2
1 (1),

1
f

k
<

−
there is an 

equilibrium of the form E2=(s*λs, y
*) where s* is the unique value of s 

such that 1- s - λx f1(s)=0 xλ  is the unique solution of (1-k) f2(x)-1=0 

and 
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Since the limit plane in (eqn. 2.2) is ∑: s+y+z=1 , then by dropping S 
equation, the system of equations eqn. (2.2) will be reduced to the form

1 2

2

( (1 ) 1 ) ( ) ,
(1 )

( (1 ) ( ) 1 ).

k yx x f x y f x y
k

y y k f x

γ′ = − − − − −
−

′ = − −
               (2.3)

It is easy to show that in eqn. 2.3 in positive plane. As a consequence, 
the global attractor in eqn. (2.1) lies in the set z=0 and ∑ plane where in 
eqn. (2.3) is satisfied. When the analysis of in eqn. (2.3) is completed in 
this paper, the work of Thieme (11), relates the corresponding dynamics 
in eqns. (2.1) and (2.3), and hence in eqn. (1.2). We will show that all 
solutions in eqn. (2.3) tend to rest points and hence, using Thieme (10), 
we can find the rest points of the system in eqn. (1.2).

We now discuss the existence of steady state. The washout steady 
state E0 always exists. A predator-free steady state E1 exists when λS<1. 
For the interior steady state E2 exists when S<1 and S+λx<1. Note that 
H(s)=1-s- λx f1(s) is decreasing function in s with 0<H(0)=1, H(s*)=0 
and H(S)=1-λs -λx So λs<s*.If and only if λS+λx<1. 

Next theorem will discuss the local stability of this steady state by 
finding the eigenvalues of the associated variation matrices.

Theorem 1

If 1<λS then only E0 exists and E0 is locally asymptotically stable. 
If λS<1 and 1<λS+λx then only E0 and E1 exist, E0 is unstable, and E1 is 
locally asymptotically stable. If λS<1 and λS+λx<1 then E0, E1, E2 exist, E0, 
E1 are unstable and E2 is locally asymptotically stable if 
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and consequently by an application of the Poincare-Bendixson theorem 
there is a periodic solution in ∑.

Proof: The Jacobian matrix in eqn. (2.3) is taken the form
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The eigenvalues are on the diagonal and the washout steady state 
will be locally asymptotically stable if and only if f1-1<0 or 1<S. 

At (λS,(1-λS),0) the Jacobian matrix becomes
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The two eigenvalues are 1(1 ) ( )s sfλ λ′− −  and (1-k) (1-f2))-1 
Therefore the predator – free steady state is asymptotically stable if and 
only if (1-k) f2 (1-λS))-1 <0 or 1<S +λx

At E2 the Jacobian matrix takes the form
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Then E2 is locally asymptotically stable if the determinant of this 
matrix is positive and its trace is negative,  it means that 
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Global Analysis
Theorem 2

For 1<λS and for large t all solutions in eqn. 2.2 tends to E0.

Proof: For1<λS and for large t we get s(t)<1 and f1(1)<1Therefore, 
the second equation 2.2 gives 1(1 (1) )( ) ,f tx t e− −<  which imply 
lim ( ) 0.
t

x t
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=  The third eqn. (2.2) becomes ,ty e−=  which leads to 
lim ( ) 0.
t

y t
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=  The first equation (2.2) has a solution s=1+(constant)
e-t→1 as t→∞.

Theorem 3

If λS<1 ,1<λS+λx and for large t then all solutions in eqn. 2.2 tend to E1

Proof 
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Let C(u) be a continuously differentiable function and )(uC′  be 
defined by
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Note that ( )C u′  is linear on [1-λS, λx] We may construct a Lyapunov 
function as follows:
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 on the set Ψ ={(s,x,y):0<s+x+y<1} where x=1-λS 

Differentiate in eqn. 3.4 with respect to time t, we obtain
.
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and equal zero for s∈[0,1) if and only if s=λS or x=0 Since ( ) 0C x′ =  for 
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s sλ ≤  and ( ) 0C u′ ≥  for 0,u ≥  then the term 1( ( ) 1) ( )x f s C x′−  is non-
positive for s∈[0,1).

Define 
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Using the definition of η we find that ( ), , 0h s x y ≤ . If 1-λs<x<λx 
then all terms of h(s,x,y) are non-positive. If ,x xλ ≤  then ( )C x β′ =  
and making use of definition of β and η  we find that h(s,x,y) will be 
non-positive and the second term of V vanishes at y=0 therefore V is 
non-positive on Ψ. 

Let M be the largest invariant subset of φ={(s,x,y)∈Ψ:V=0} such 
that V=0 at S= λs or x=0 and y=0. More further,V is bounded above, 
any point of the form (s,0,0) cannot be in the  limit set  of any solution 
initiating in the interior of 3.R+  (λs,x,0)M implies that S=s and from the 
first equation (2.2 ), we get x=1-λs 

Therefore M={E1}. This completes the proof.

Theorem 4

If λs<1 and λs+λX<1 then the system in eqn. (2.2) is uniformly 
persistence.

Proof

Let Z1={(s,x,y):s∈[0,1] ,x,y∈(0,1]}, 

Z2 represents : 0 , 1,sx plane s x− ≤ ≤  

Z3 represents : 0 , 1,sy plane s y− ≤ ≤  and

Z = Z2 ∪ Z3

We want to show that Z is a uniformly strong repeller for Z1 Since 
E0 and E1 are the only steady states in Z. E0 is saddle in R3and its stable 
manifold is {( ,0, ) : 0 }.s y y≤ Also, E1 is saddle in R3 and its stable 

manifold is {( , ,0) : 0 }.s x x< Then, they are weak reppelers for Z1.The 
stable manifold structures of E0 and E1 imply that they are not cyclically 
chained to each other on the boundary Z. Therefore Z is a uniform 
strong repeller for Z1 (see proposition in eqn.(1.2) of Thieme [12]).

So, there are ε1>0 and ε2>0. such that 1liminf ( )
t

x t ε
→∞

>  and 
2liminf ( )

t
y t ε

→∞
>  where 1 and ε2 are not depending on the initial values 

in Z1. By using (Thieme [12]), the first eqn. (2.2) yields that there is ε3>0 
such that 3liminf ( )

t
s t ε

→∞
>  where 3 is not depending on the initial values 

in Z1Proof is completed.

Conclusion and Numerical Simulation 
In this paper, we consider a prey-predator model in chemostat 

when the predator produces inhibitor. This inhibitor is lethal to the 
prey by results in decrease of growth rate of the predator at some cost 
to its reproductive abilities. We found that the washout steady state 
is the global attractor, if it is the only steady state and λs>1. When the 
washout and the predator free steady states are the only steady states, 
we found that E0 is unstable and E1 is locally asymptotically stable. E1is 
global attractor by constructing a Lyapunov function under condition 
that 1sλ <  and 1.s xλ λ+ >  We also showed that E2 exists in the sense 
that the system is uniformly persistent and E2 is locally asymptotically 
stable if the determinant of this matrix is positive and its trace is 
negative, it means that
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λ γ
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We find by numerical simulation that eight iterative examples are 

presented here to show the influence of increasing the parameter k on 
the dynamical behaviour. In all examples, parameters values in eqn. 
(2.2) are as follows [2]:

(s(0),x(0),y(0))=(0.1,0.7,0.8),m1=4.0,m2=5.0,a1=0.6,a2=0.5,γ=0.2

And we deduce that when k ∈[0,0.4] the solution appears to 
approach a periodic solution. So, E0, E1 and E2 lose their stability 
(Figures 1-3). Those oscillatory solutions appear to be the results of 
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Figure 1: The results of Hopf bifurcations and oscillatory solutions are k=0.1.
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Figure 2: The results of Hopf bifurcations and oscillatory solutions are k=0.2
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Figure 3: The results of Hopf bifurcations and oscillatory solutions oscillatory solutions are k=0.3.
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 Figure 4: The solution approaches positive steady, unstable, stable states and oscillatory solutions are k=0.4.
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Figure 5: The solution approaches positive steady, unstable, stable states and oscillatory solutions are k=0.5.
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Figure 6: The solution approaches positive steady, unstable, stable states and oscillatory solutions are k=0.6
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Figure 7: The solution approaches positive steady, unstable, stable states and oscillatory solutions are k=0.8
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Hopf bifurcations. The numerical simulation shows that the system in 
eqn. (2.2) has an attracting limit cycle. 

Also, at k ∈[0.4,6.5] the solution approaches a positive steady state. 
Both E0 and E1 are unstable and E2 is globally asymptotically stable 
(Figures 4-7). 

For k ∈[6.5,1] the solution approaches the predator-free steady 
state. E0 is unstable and E1 is globally asymptotically stable (Figure 
8). All left figures plot in time courses and all right figurers plot the 
trajectory in (s,x,y) space. We also, deduce that no difference between 
this paper and Moniem [2] as numerical simulation, even γ changes its 
value on interval [0,1[for each value of k. 
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