
Research Article Open Access

Barna et al., J Generalized Lie Theory Appl 2017, 11:2
DOI: 10.4172/1736-4337.1000271

Volume 11 • Issue 2 • 1000271J Generalized Lie Theory Appl, an open access journal
ISSN: 1736-4337

Journal of Generalized Lie 
Theory and ApplicationsGe

ne
ra

liz
ed

Lie
Theory andApplications

ISSN: 1736-4337

Analytic Solutions of the Madelung Equation
Barna IF1,2*, Pocsai MA1,3 and Mátyás L4

1Wigner Research Center of the Hungarian Academy of Sciences Konkoly-Thege út 29-33, 1121 Budapest, Hungary
2ELI-HU Nonprofit Kft, Dugonics Tér 13, H-6720 Szeged, Hungary
3University of Pécs, Institute of Physics, Ifjúság útja 6 H-7624 Pécs, Hungary
4Sapientia University, Department of Bioengineering, Libertatii sq. 1, 530104 Miercurea Ciuc, Romania

*Corresponding author: Barna IF, Wigner Research Center of the Hungarian
Academy of Sciences Konkoly,Thege út 29-33, 1121 Budapest, Hungary, Tel:
+36-1-392-2222/3504; Fax: +36-1-392-2598; E-mail: barna.imre@wigner.mta.hu

Received June 16, 2017; Accepted July 05, 2017; Published July 10, 2017

Citation: Barna IF, Pocsai MA, Mátyás L (2017) Analytic Solutions of the Madelung 
Equation. J Generalized Lie Theory Appl 11: 271. doi: 10.4172/1736-4337.1000271

Copyright: © 2017 Barna IF, et al. This is an open-access article distributed under 
the terms of the Creative Commons Attribution License, which permits unrestricted 
use, distribution, and reproduction in any medium, provided the original author and 
source are credited.

Abstract
We present analytic self-similar solutions for the one, two and three dimensional Madelung hydrodynamical 

equation for a free particle. There is a direct connection between the zeros of the Madelung fluid density and the 
magnitude of the quantum potential.
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Introduction
Finding classical physical basements of quantum mechanics is a 

great challenge since the advent of the theory. Madelung was one among 
the firsts who gave one explanation, this was the hydrodynamical 
foundation of the Schrödinger equation [1,2]. His exponential 
transformation simply indicates that one can model quantum statistics 
hydrodynamically. Later, it became clear that the Madelung Anzatz is 
just the complex Cole-Hopf transformation [3,4] which is sometimes 
used to linearize non-linear partial differential equations(PDEs).

The transformed equation has an attractive feature that the Planck’s 
constant appears only once, as the coefficient of the quantum potential 
or pressure. Thus, the fluid dynamicist can gather experience of its 
effects by translating some of the elementary situations of the quantum 
theory into their corresponding fluid mechanical statements and vice 
versa.

The quantum potential also appears in the de Broglie-Bohm pilot 
wave theory [5,6] (in other context) which is a non-mainstream attempt 
to interpret quantum mechanics as a deterministic non-local theory. In 
the case of 0→  the Euler equation goes over the Hamilton-Jacobi 
equation.

As an interesting peculiarity Wallstrom showed with mathematical 
means that the initial-value problem of the Madelung equation is not 
well-defined and additional conditions are needed [7].

Nowadays, hydrodynamical description of quantum mechanical 
systems is a popular technical tool in numerical simulations. Review 
articles on quantum trajectories can be found in a booklet edited by 
Huges in 2011 [8].

From general concepts as the second law of thermodynamics 
a weakly non-local extension of ideal fluid dynamics can be derived 
which leads to the Schrödinger-Madelung equation as well [9].

In our following study we investigate the Madelung equation with 
the self-similar Ansatz and present analytic solutions with discussion.

This way of investigation is a powerful method to study the global 
properties of the solutions of various non-linear PDEs [10]. Self-similar 
Ansatz describes the intermediate asymptotic of a problem: it is hold 
when the precise initial conditions are no longer important, but before 
the system has reached its final steady state. This is much simpler than 
the full solutions and so easier to understand and study in different 
regions of parameter space. A final reason for studying them is that 

they are solutions of a system of ordinary differential equations(ODEs) 
and hence do not suffer the extra inherent numerical problems of the 
full PDEs. In some cases self-similar solutions helps to understand 
diffusion-like properties or the existence of compact supports of the 
solution.

In the last years we successfully applied the multi-dimensional 
generalization of the self-similar Ansatz to numerous viscous fluid 
equations [11,12] ending up with a book chapter in ref. [13].

To our knowledge there are no direct analytic solutions 
available for the Madelung equation. Baumann and Nonnenmacher 
[14] exhaustively investigated the Madelung equation with Lie
transformations and presented numerous ODEs, however non exact
and explicit solutions are presented in a transparent way. Additional
numerous studies exist where the non-linear Schrödinger equation is
investigated with the Madelung Ansatz ending up with solitary wave
solutions, [15] however that is not the field of our present interest.

Theory and Results
Following the original paper of Madelung [2] the time-dependent 

Schrödinger equation reads:
2
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where Ψ,U,m,h are the wave function, potential, mass and Planck’s 
constant, respectively. Taking the following Ansatz = iSeρΨ  where 
ρ(x,t) and S(x,t) are time and space dependent functions. Substituting 
this trial function into eqn. (1) going through the derivations the real 
and the complex part gives us the following continuity and Euler 
equations with the form of:
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where the following substitution has to be made =v S
m
∇

 . The ρ is the 

density of the investigated fluid and v is the velocity field. Madelung 
also showed that this is a rotation-free flow. The transformed equations 
has an attractive feature that the Planck’s constant appears only once, 
at the coefficient of the quantum potential or pressure, which is the first 
term of the right hand side of the second equation. Note, that these are 
most general vectorial equation for the velocity field v which means 
that one, two or three dimensional motions can be investigated as well. 
In the following we will consider the two dimensional flow motion 
v=(u,v) in Cartesian coordinates without any external field U=0. The 
functional form of the three and one dimensional solutions will be 
mentioned briefly as well.

We are looking for the solution of eqn. (2) with self-similar Ansatz 
which is well-known from ref. [10]

( , , ) = := ( ), ( , , ) = ( ), ( , , ) = ( ),x yx y t t f t f u x y t t g v x y t t h
t
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βρ η η η− − − −+ 
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where f, g and h are the shape functions of the density and the velocity 
field, respectively. The similarity exponents α,β,δ,ε are of primary 
physical importance since α,δ,ε represents the damping of the 
magnitude of the shape function while β represents the spreading. 
More about the general properties of the Ansatz can be found in our 
former papers [11,12]. Except some pathological cases all positive 
similarity exponents mean physically relevant dispersive solutions with 
decaying features at x,y,t→∞. Substituting the Ansatz (3) into (2) and 
going through some algebra manipulation the next ODE system can be 
expressed for the shape functions.

1 1 = 0,
2 2

f f f g fg f h fhη′ ′ ′ ′ ′− − + + + +

2 3

2 3 2

1 1 = ,
2 2 2 2 2

f f f fg g gg hg
m f f f

η
′ ′ ′′ ′′′ 

′ ′ ′− − + + − + 
 



2 3

2 3 2

1 1 = .
2 2 2 2 2

f f f fh h gh hh
m f f f

η
′ ′ ′′ ′′′ 

′ ′ ′− − + + − + 
 

 	                (4)

The first continuity equation can be integrated giving us the mass 
as a conserved quantity and the parallel solution for the velocity fields 
η=2(g+h)+ c0 where c0 is the usual integration constant, which we set 
to zero. (A non-zero c0 remains an additive constant in the final ODE 
(5) as well.) It is interesting, and unusual (in our practice) that even the 
Euler equation can be integrated once giving us the conservation of 
momenta. For classical fluids this is not the case. After some additional 
algebraic steps a decoupled ODE can be derived for the shape function 
of the density.

2 2 2
2

22 ( ) = 0.
2

m ff f f η′′ ′− +


			                 (5)

All the similarity exponents have the fixed value of 
1
2

+  which is 
usual for regular heat conduction, diffusion or for Navier-Stokes 
equations [13]. Note, that the two remaining free parameters are the 
mass of the particle m and 


 which is the Planck’s constant divided 

by 2π. For a better transparency we fix = 1
. This is consistent with 

experience of regular quantum mechanics that quantum features are 
relevant at small particle masses.

At this point it is worth to mention, that the obtained ODE for the 
density shape function is very similar to eqn. (5) for different space 
dimensions, the only difference is a constant in the last term. For one, 
two or three dimensions the denominator has a factor of 1,2 or 3, 
respectively.

An additional space dependent potential U (like a dipole, or 
harmonic oscillator interaction) in the original Schrödinger equation 
would generate an extra fifth term in eqn. (5) like, f(η),η2. Unfortunately, 
no other analytic closed form solutions can be found for such terms 
(Figures 1 and 2).

The solution of (5) can be expressed with the help of the Bessel 
functions of the first and second kind [16] and has the following form of:
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    (6)

where c1 and c2 are the usual integration constants. The correctness 
of this solutions can be easily verified via back substitution into the 
original ODE.

To imagine the complexity of these solutions Figures 1 and 2 
present f(η) for various m, c1 and c2 values. It has a strong decay with 
a stronger and stronger oscillation at large arguments. The function 
is positive for all values of the argument, (which is physical for a fluid 
density), but such oscillatory profiles are completely unknown in 
regular fluid mechanics [13]. The most interesting feature is the infinite 
number of zero values which cannot be interpreted physically for a 
classical real fluid.

The presented form of the shape function cannot be simplified 
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Figure 1: The solution of eqn. (6) (c1=c2=1) the yellow curve is for m=1 and 
blue curve is for m=0.5.
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Figure 2: The solution of eqn. (6) (m=1) the blue curve is for c1=c2=1, the 
yellow for c1=1/4 and c2=1/2 and the green for c1=−1/2 and c2=1/2.
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further, only Yvs can be expresses with the help of Jvs [16]. Applying the 
recurrence formulas the orders of the Bessel functions can be shifted 
as well. With the parabolic cylinder functions the Bessel functions 
with 3/4 and 1/4 orders can be expressed, too. Unfortunately, all these 
formulas and manipulations are completely useless now. However, the 
denominator of (6) can be simplified to a power function, therefore 

( )f η  can be written in a much simpler form:
22 2

1 1/ 4 2 1/ 4
2 2= .

64 8 8
m mf c J c Yπη η ηη − 		   (7)

Both Jv and Yv Bessel functions with linear argument form an 
orthonormal set, therefore integrable over the L2 space. In our case, the 
integral 

0
( )f dη η

∞

∫  is logarithmically divergent, unfortunately it cannot 
be interpreted as a physical density function of the original Schrödinger 
equation. However, f  could be interpreted as the fluid mechanical 
analogue of the real part of the wave function of the free quantum 
mechanical particle which can be descried with a Gaussian wave packet. 
To obtain the complete original wave function, the imaginary part has 

to be evaluated as well. It is trivial from 1/ 2= = 2( )x y g h
t
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Figure 3 shows the projection of the real part wave function to the 
x,t sub-space. At small times the oscillations are clear to see, however at 
larger times the strong damping is evident.

For arbitrary quantum systems, the wave function can be evaluated 
according to the Schrödinger equation, however we never know 
directly how large is the quantum contribution to the classical one. 
Now, it is possible for a free particle to get this contribution. (The 
Schrödinger equation gives the Gaussian wave function for a freely 
propagating particle). With the Madelung Ansatz we got the classical 
fluid dynamical analogue of the motion with the physical parameters 
ρ(x,y,t),v(x,y.t) which can be calculated analytically via the self-similar 
Ansatz thereafter original wave function Ψ(x,y,t) of the quantum 
problem can be evaluated as well. The magnitude of the quantum 

potential Q directly informs us where quantum effects are relevant. 
This can be evaluated from the classical density of the Madelung eqn. 
(2) via:
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Figure 4 shows the shape function of quantum potential Q() 
comparing to the shape function of the density f(). Note, that 
where the density has zeros the quantum potential is singular. Such 
singular potentials might appear in quantum mechanics, however 
the corresponding wave function should compensate the effect. This 
question is analyzed in the book of Holland [17] for various other 
quantum systems.

Conclusion
After reviewing the historical development and interpretation 

of the Madelung equation we introduced the self-similar Ansatz 
which is a not-so-well-known but powerful tool to investigate non-
linear PDEs. The free particle Madelung equation was investigated 
in two dimensions with this method, (the one and three dimensional 
solutions were mentioned as well.) We found analytic solution for the 
fluid density, velocity field and the original wave function. All can be 
eliminated with the help of the Bessel functions. The classical fluid 
density has interesting properties, oscillates and has infinite number of 
zeros which is quite unusual and has not yet been seen in such analysis.
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