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Abstract
An analytical and numerical solution for the one dimensional of heat conduction in a slab exposed to different 

temperature at both ends is presented. The distribution of heat throughout the transient direction obeys to functionally 
graded (FG) temperature based on Dirichlet boundary conditions. The variation of functionally graded temperature 
can be described by any form of continuous function. In this case, where the external heat fluxes are not directly 
definite based on the Dirichlet or mixed boundary conditions, the fluxes that concluded over the slab faces are free 
to vary until the equilibrium condition is reached. By numerically solving the resulting heat-conduction equation, the 
distribution of temperature which vary with time through the slab is obtained. The obtained analytical results are 
presented graphically and the influence of the gradient variation of the temperature on shape formed with changed 
time is investigated. 
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Introduction
Functionally graded materials (FGMs) are defined as the perfect 

materials in mechanical, thermal and corrosive resistant properties. 
Different from fiber-matrix laminated composites, FGMs do not 
have the problems of de-bonding resulting from large inter-laminar 
and thermal stresses. The impression of FGMs was firstly introduced 
by Japanese researchers in the mid-1980s, as ultra-high temperature 
resistant materials for various engineering fields for instance aircraft, 
space vehicles, and nuclear reactors. FGMs consist of two or more 
materials which microscopically inhomogeneous and spatial composite 
materials such as a pair of ceramic–metal. The mechanical properties 
of the material structure changes gradually throughout the thickness 
with varying continuously and smoothly from top to the bottom 
surface. Noda [1] showed many topics range from thermoelastic to 
thermoinelastic problems. He suggested that temperature dependent 
properties of the material should be taken into account in order to 
achieve more accurate analysis.

For a historical era, FGMs studying focused on the analyses of 
thermal stress in the ceramic coatings, static deformation, and forced 
vibration. Noda and Jin [2,3] presented a steady thermal stress for a 
crack elastic solid based on nonhomogeneous infinite, and concluded 
that effects of the thermal stress intensity for cracks in FGMs. Cho and 
Oden [4] used a Crank–Nicolson and Galerkin scheme to investigate a 
parametric study of thermal stress characteristics. Reddy [5] proposed 
a theoretical formulation and finite element models for the analysis 
of functionally graded plates (FGPs). Praveen and Reddy [6] studied 
responses of FGPs based on static and dynamic thermoelastic responses 
and concluded that, the differences of pure ceramic or metal plates 
depend on responses of FGPs. Yang and Shen [7] presented a free 
and forced vibration analyses of functionally graded plates subjected 
to impulsive lateral loads under thermal environments. Dirichlet 
boundary conditions (DBCs) generally hold two forms: homogeneous 
Dirichlet boundary conditions (HDBCs) and inhomogeneous Dirichlet 
boundary conditions (IDBCs). The former can be considered as a special 
case of the latter with zero imposed value. Zhang and Zhao [8] developed 
a weighted finite cell method (FCM) with high computing accuracy which 
extended to define boundary value function so that the inhomogeneous 
Dirichlet boundary conditions (IDBCs) are imposed exactly.

Theoretical Formulation
There are many models for expressing the variation of material 

properties in FGMs. The most commonly used of these models is 
the power law distribution. In this study, the new expression of heat 
transfer through in slab is assumed based on two parameters as:
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3( ) 0.5 0.5
2

k xx x m x e Φ = Φ + − −  
  (1)

Where, m and k are the parameters which are used to define the 
variation. ɸ0 is a constant and related to the value of the variation 
function ɸ(x) at the left surface of the slab (x=a) by:
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                  (2)

Here, φ0=ɸ(x) is initial value of the variation at x=a Eq. (1) is a 
nonlinear function and its variation (shape) is controlled by using two 
parameters. One may observe that, the adjustment of the parameters m 
and k is not easy for describing the desired variations. Figure 1 shows 
the variation of temperature of metal in the transverse direction of slab.

Exact Solution of the Heat Equation
Consider a one-dimensional diffusion equation which is a partial 

differential equation for the temperature T(x,t):

( ) ( ) ( , )T Tc x x S x t
t x x

∂ ∂ ∂ = κ + ∂ ∂ ∂ 
   (3)

Where, c(x) is the specific heat of the material, κ is the constant 
of proportionality (thermal conductivity) of the material and S(x,t) 
represents a given source of heat energy per unit volume. The equation 
simplifies when κ and c are independent of position:
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 Where, χ is the material thermal diffusivity,

c
κ

χ = 					                 (5)

The initial temperature in the slab heat equation is a first-order 
PDE in time:

0( ,0) ( )T x T x=  					                  (6)

The second order equation in space requires two boundary 
conditions to satisfy the solution. By putting the faces in a suitable 
thermal contact at a specified temperature T1(t) and T2(t) so the 
Dirichlet boundary conditions are achieved as:
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The equilibrium solution ɸ(x) that satisfies these boundary 
conditions, as well as the time-independent heat equation:

( )0 ( ) ( , )xx S x t
x x
∂ ∂Φ = κ + ∂ ∂ 

 			                  (8)

Using the direct integration (analytically), equation  goes to general 
solution:
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The constants C1 and C2 are chosen to match the boundary 
conditions. For a temperature balance to exist, there can be no net heat 

energy infused into the section by the source:
0

( ) 0
L

S x dx′′ ′′ =∫ ), else the 

temperature should increase or decrease as the overall energy content 
in the slab varies with time. The relation between the equilibrium 
temperature and the deviation from equilibrium ∆T(x,t) is:

( , ) ( ) ( , )T x t x T x t= Φ + ∆  				                (10) 

By Substitution Eq. (10) into the heat equation Eq. (3) and 
application of Eq. (8) indicates that ∆T(x,t) satisfies the homogeneous 
heat equation:

( ) ( )T Tc x x
t x x

∂∆ ∂ ∂∆ = κ ∂ ∂ ∂ 
			                 (11) 

With homogeneous boundary conditions, and initial condition:

0( ,0) ( ) ( )T x T x x∆ = −Φ  				                (12)

We will only consider the case where κ and C are constants, so that 
Eq. (11) becomes the diffusion equation with no heat source,
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We look for a solution of the form ( , ) ( ) ( )T x t f t x∆ = ψ . Substituting 
this expression into Eq. (13) and dividing by ( ) ( )f t xψ  yields,
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Which can be separated into two ODEs with respect to independent 
x and t. By putting of each separated equations of Eq. (14) are equal to 
a constant λ,
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After applying Dirichlet boundary conditions, solution of Eq. (16) 
for the eigenmodes is,

( ) sin n xx D
L
π

ψ =  			     	              (17) 

And; 
2( ) , 1,2,3,n n L nλ = λ = −χ π = 

		                (18) 

The solution of Eq. (15) provides the time-dependent amplitude for 
each eigenmode as,

( ) tf t Aeλ=  					                 (19)

Therefore, the general solution of the heat equation away from 
equilibrium is,
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The constant D is absorbed into the Fourier coefficient An which 
can be found by matching the initial condition, Eq. (12),

0
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Equation (21) is a Fourier sine series and the coefficient An is 
determined as,

[ ]0
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Dirichlet boundary conditions in a uniform slab are applied to 
get equations (20) and (22) which is the solution for the deviation 
from equilibrium. In addition, Eq. (22) is solved numerically by using 
trapezoidal method which can be seen in the numerical example.

The Crank-Nicolson Method
An implicit scheme of Crank-Nicolson which is based on the 

central approximation of Eq. (13) at the point 1,
2i jx t t + ∆ 

 
 as shown 

in Figure 2,
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Figure 1: Temperature variation along the transverse position.
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substituting the exact solution T in the discrete system. This means the 
numeric solution T∆x converges to exact solution in a given norm if 

x xT T∆ ∆ε = −  satisfies 
0

lim 0xx ∆∆ →
ε = .

The consistency between the solutions of the continuous and 
discrete problems does not guarantee also have a tendency to zero. 
On the other hand, the difference between the differential and discrete 
operators on a smooth sufficient function tends to zero.

Numerical Example
In this section, the distribution of temperature throughout the 

transverse direction of slab is tested based on assumed temperature 
gradient. The properties of slab are selected as the parameters in Eq (1): 

4.210933k −= , 2.743578m =  and 0 1.142857Φ =  to ensure the start 
point at the left side equal 1.0 and the end point goes to 0.730101. Other 
properties, L=1.0 m, n=40, χ=1.0 m2/sec, ∆t=0.0001 sec and ∆x=L/n. 
The difference between an analytical and trapezoidal method used for 
integral part in Eq. (22) and the values applied to find the temperature 
in Eq. (10) based on time step t=0.02sec as shown in Table 1. 

Figures 3-6 represent the shape of temperature distribution 
which taking with increasing time (t=0.02, 0.1, 0.2 and 0.4). By fixing 
the temperature variation based Crank-Nicolson (CN) method, the 
comparison with the exact is done with showing two-time step t=0.3 
sec and t=0.4 sec as in Figures 7 and 8. For example, the time elapsed 
to get (CN) temperature variation for 0.5, 0.55, 0.575 and 0.6 are 
respectively: 0.535268, 0.519372, 0.566319 and 0.505062.

Conclusions
In this paper, simple method to solve the transient response 

problem of a functionally graded temperature variation in the 1-D 

Space derivative approximation which is used for is just an average 
of approximations in points ( , )i jx t  and 1( , )i jx t + , 
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Introducing 2t xα = χ∆ ∆  one can rewrite Eq. (24) as,
1 1 1

1 1 1 12(1 ) 2(1 )j j j j j j
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+ − + −−α + + α − α = α + − α + α        (25) 

The terms which appear in the right-hand side of Eq. (25) are 
known. Hence, Eq. (25) form a tridiagonal linear system (AT=b) which 
can be solve simultaneously to find the temperature at every node at 
any point in time.

The complex stability analysis will be procedure in some simple 
steps. The equation (24) can be written as,
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The equation (26) has a consistency,
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To make a stability analysis, the scheme will be written into two 
form stages:
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Where, 
2

t
x
∆
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∆

 and is called of grid ratio.

Therefore; 
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Eq. (30) leads to the consequence that Z(θ) ≤ 1, so this scheme is 
an unconditionally stable and ( )2 2O x tε = ∆ + ∆  then this system has 
a second order of convergence. The consistency error is obtained by 
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Figure 3: Temperature distribution for t=0.02 sec.

Figure 2: Crank-Nicolson method scheme.

x/L Analytical Trapezoidal
0.0 1.000000 1.000000
0.1 0.588196 0.588655
0.2 0.294891 0.295522
0.3 0.129512 0.130024
0.4 0.0610078 0.061314
0.5 0.0489602 0.049157
0.6 0.0727702 0.073010
0.7 0.139666 0.140043
0.8 0.272146 0.272607
0.9 0.479501 0.479836
1.0 0.730101 0.730101

Table 1:  Comparison between analytical and trapezoidal method for heat equation 
based on time step t=0.02 sec that integral appears in Eq.22.



Citation: Essa S (2016) Analytical and Numerical Analysis of Functionally Graded Heat Conduction Based on Dirichlet Boundary Conditions. J 
Material Sci Eng 5: 293. doi:10.4172/2169-0022.1000293

Page 4 of 4

Volume 5 • Issue 6 • 1000293J Material Sci Eng, an open access journal
ISSN: 2169-0022 

slab has been proposed. The assumed temperature is embedded into 
the diffusion equation with no source of heat then exact solution is 
obtained. In addition, the integral part of An coefficient in Eq. (22) 
is solved numerically using trapezoidal method and the difference 
is exhibited in Table 1. In this table, the differences of temperature 
between the two methods are too small. Crank-Nicolson (CN) method 
is applied to solve the diffusion equation based on the given variation 
ɸ(x). The assumption of variation is selected for two variables k and m. 
The temperature at any point goes to take the assumed variation with 
time. By fixing the numerical method at the shape of variation function, 
the times that the exact solution is needed to get the numerical solution 
are computed. Using these methods, the time required to reach 

the assumed model can be calculated at any position with the given 
Dirichlet boundary condition. 
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Figure 4: Temperature distribution for t=0.1 sec.
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Figure 6: Temperature distribution for t=0.4 sec.
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Nicolson method.
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