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Abstract

Bacillus thuringiensis is a microbial insecticide whose presence in the Fernandez Canyon State Park, a protected
natural area in the north of Mexico, has not been reported. The objective of this work was to isolate Bacillus
thuringiensis strains isolated from the Fernandez Canyon State Park with the capacity to synthesize antimicrobial
peptides (bacteriocins). We showed the isolation and characterization of two native strains of Bacillus thuringiensis
(CF13 and CF42) collected from soils of the protected area. Bacteria were identified based on its capacity to
synthesize spherical crystals and by sequencing of the flagellin gene. Both strains produced bacteriocins with
bactericial/bacteriolytic activity against Bacillus cereus, with molecular mass of 10 kDa and 15 kDa, susceptible to
proteolytic treatment, thermotolerants and with activity to ten Gram-positive and eight Gram-negative bacteria that
might affect human and animal health. The importance of this work is that it is reported for the first time the isolation
and characterization of bacteriocinogenic strains of Bacillus thuringiensis native from the Fernandez Canyon State
Park, a protected natural area in Mexico.

Keywords: Bacillus thuringiensis; Bacteriocins; Antibacterial
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Introduction
Bacillus thuringiensis is the most important microbial bioinsecticide

used worldwide, and its activity is due to the production of
intracellular crystals formed mainly by Cry and Cyt proteins [1,2].
Additionally, Bacillus thuringiensis produce different metabolites with
biotechnological potential value, including, bacteriocins, chitinases,
vegetative proteins (VIP), enhancing like proteins, SIP toxins, proteins
related to cholesterol-dependent cytolysins, beta exotoxins and lipases,
among others [2-4]. Currently, most studies related to the isolation of
Bacillus thuringiensis strains have been focused on entomotoxicity,
crystal morphology, and the Cry genes composition present in the
bacterial isolates [5,6]. In comparison, less studies on bacteriocins have
been reported, but they are of significant interest because their
inhibitory effect against bacteria of importance in human and animal
health [3,7].

Although there has been reports on the isolation and
characterization of Mexican Bacillus thuringiensis strains from the
states of Baja California Norte, Michoacán, Nayarit and Guanajuato,
México [6,7] among others, few studies have focused on the capacity of
these microbes to produce bacteriocins [8]. Bacillus thuringiensis is a
cosmopolitan bacterium, but to our knowledge there is not report
about the isolation of this microorganism in the Fernandez Canyon
State Park (“Parque Estatal Cañón de Fernandez”), a protected natural
area located in norther of México between the states of Coahuila and

Durango, in a region known as “Comarca Lagunera” [9]. The objective
of this study was to select Bacillus thuringiensis strains from the
Fernandez Canyon State Park based on their capacity to produce
bacteriocins, with the purpose of extending the knowledge of these
metabolites synthesized by this bacterium.

Material and Methods

Bacterial strains
We used a collection of Bacillus sp (158 strains) held at “Laboratorio

de Bioprospección y Bioprocesos” of the “Universidad Autónoma de
Coahuila”, obtained by sampling the flood plain soil from Fernandez
Canyon State Park. Subsequently using phase contrast microscopy
(Imager A1, Carl Zeiss, Jena, Germany), we selected isolates that
produced intracellular crystals, which were classified as putative
Bacillus thuringiensis strains.

Growth of strains and metabolite production
Selected bacteria were grown in synchronous cultures using Tryptic

soy broth (TSB) at 30 ± 2°C, 180 rpm for 120 hr. Duplicate aliquots
were taken at different times. The first aliquot was used for monitoring
the cellular growth (600 nm). The second was centrifuged at 9000 χg,
10 minutes, and the cell-free supernatants were obtained by filtration
using a syringe filter with 0.45 μM pore size (Merck Millipore,
Darmstadt, Germany). Cell-free supernatants were used for assaying
the antibacterial activity. The antibacterial activity was determined by
the well-diffusion method against Bacillus cereus 183 used as indicator
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bacterium [8]. Two isolates, CF13 and CF42, with the highest
antibacterial activity were selected for further studies.

Molecular identification by 16S rDNA and flagellin gene
sequence

To confirm the identity of CF13 and CF42, 1.5 mL of bacterial
cultures were grown during 18 hr at 200 rpm, centrifuged at 9000 g for
5 min, the pellets were resuspended in 200 μL of distilled water and
boiled during 15 min. We amplified the 16S rDNA sequence and the
hag gene by polymerase chain reactions, using the oligonucleotides
UBF (F: 5’-AGAGTTTGATCCTGGCTGAG-3’) and 1492 (R: 5’-
GGTTACCTTGTTACGACTT-3’) [10], and BtFlaA5 (F: 5'-
ATGAGCAATTCTATGGACCG-3', R: BtFlaA6 5'-
TTTCAGACATTTCTTTCGCC-3´), respectively. The 16S rDNA
sequence was amplified using conditions previously described [10],
and the hag gene as follows: 5 min at 95°C; 30 cycles of 1 min at 95°C, 1
min at 48°C (or 58°C) and 2 min (or 4 min) at 72°C, with a final
extension of 7 min at 72°C [11], in a C1000 Touch TM thermocycler
(Bio-Rad, Hercules, CA, USA). Amplicons were purified from agarose
gels using the QIAprep Spin Miniprep Kit (250) (Qiagen) and
sequenced at the National Laboratory of Genomics for Biodiversity
(Langebio, at CINVESTAV-Irapuato, México). Sequences were
compared with those reported in the GenBank data and analyzed by
Basic Local Alignment Tool (BLAST) of the National Center for
Biotechnology (NCBI).

Bacteriocin production
Batch fermentation under the same conditions described previously

was carried out. Cells were harvested at the time where the maximum
production of bacteriocin were detected. Cultures were centrifuged at
9000 χg during 15 min at 4×C, supernatants were collected and
proteins were concentrated with ammonium sulfate at different
saturation values (20, 40, 60, 80 and 100%). Samples were incubated at
least 1 hr, at 4°C [12], centrifuged 9000 χg and crude samples
containing bacteriocins were resuspended in phosphate buffer 100 mM
pH 6.8. Samples were dialyzed overnight against the same buffer using
a mini dialysis kit with membrane of 3.5 kDa cut off (Amersham
Bioscience).

Determination of antibacterial activity
The antibacterial activity was determined against Gram-positive and

Gram-negative bacteria by the well-diffusion method [8]. A clear halo
around ≥ 1 mm beyond the well-diameter indicates that compounds
inside the well, present in the crude extracts, have inhibitory effect
against indicator bacterium. One arbitrary unit of inhibitory activity
was defined as equal to 1 mm2 of the zone of inhibition of growth of
the indicator bacterium. Each point of activity was repeated in
triplicate and the average was recorded.

Effect of physiochemical parameters on antibacterial activity
Bacteriocin activity were evaluated in a pH range of 5 to 9 using a

buffer containing citric acid, glycine, sodium phosphate, MES [2 (n-
morpholino) ethane sulfonic acid], Trizma base [Tris (hidroxymethyl)
aminoethane] with a final concentration of 100 mM. Then 75 μL of
buffer were mixed with 25 μL of crude bacteriocin, and incubated
aseptically 1 hr at 28°C. Antibacterial activity also was evaluated at
different temperatures (50, 60, 70, 80, 90 and 121°C) for 20 minutes.

The well-diffusion assay was carried out as previously was described to
determine the activity.

Effect of proteolytic enzymes on antibacterial activity
To evaluate whether components with antibacterial activity were of

proteinaceous nature, crude samples were treated with protease,
trypsin and chymotrypsin (Sigma-Aldrich, St. Louis, MO, USA) and
proteinase K (New England Biolabs, Ipswich, MA, USA). Samples of 90
µL were incubating with 10 µL of enzyme (1 mg/mL) in the
appropriate buffer at 37°C for 2 hr or at 42°C with protease K. The
antibacterial activity of all the reactions was determined by the well-
diffusion assay against Bacillus cereus as indicator bacterium [8].

Effect of bacteriocins to inhibit another bacterial growth
To determine the effect of bacteriocins on a culture of Bacillus

cereus 183, the indicator bacterium, 100 mL of fresh bacterial cultures
with ~ 1 × 109 cells/mL was inoculated with ~ 3000 U of bacteriocins
in the middle of logarithmic-phase (~ 3 hr), and the effect on bacterial
viability of Bacillus cereus was evaluated at different intervals of time
(0-60 minutes) using a micro-plate reader Synergy HTX (Biotek).
Cultures of Bacillus cereus 183 no supplemented with bacteriocins
were used as negative controls [13].

Antibacterial activity determined by gel-overlay assay
To estimate the molecular mass of putative bacteriocins, crudes

samples were treated with Laemmli’s buffer without mercaptoethanol
and then loaded in two sodium dodecyl sulfate (SDS)-polyacrylamide
(16%) gels for electrophoresis (SDS-PAGE). One gel was stained
Coomassie blue, and the second gel was used to determine the
antibacterial activity in a gel-overlay assay as previously indicated [8].

Results

Crystal production
From 158 bacterial strains isolated from Fernandez Canyon State

Park belonging to “Laboratorio de Bioprospección y Bioprocesos” of
the “Universidad Autónoma de Coahuila”, 44% have antibacterial
activity, 13% were spore-forming and 6% produce intracellular crystal.
From crystalliferous strains, CF13 and CF42 were selected because
they had the highest antibacterial activity. Both strains are sporogenic
and produce spherical crystals (Figure 1A). We determined the growth
curve (data not shown) of CF42 and CF13, and observed that the
highest bacteriocins production of these isolates occurred in the
exponential (12 hr) and in the beginning stationary (24 hr) phases of
growth, respectively (Figure 1B) and the high activity concentration
was detected at 80% of ammonium sulfate saturation in both strains.
Similar behavior has been reported for other bacteriocins produced by
Mexican strains whose maximum activity was observed at the start or
at the end of the stationary stage [8,14].

Molecular identification by 16S rDNA and flagellin gene
sequence

Based on both 16S rDNA and hag sequences, these strains were
identified as Bacillus thuringiensis subsp. kenyae (identities ~ 100%).
The hag gene encodes the flagellin, which is a protein responsible for
eliciting the immunological reaction in H serotyping, allowing the
identification and assignation of the subspecies [15].
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Determination of antibacterial activity
Both strains also showed a broad spectrum of activity, with

inhibitory effects against ten Gram-positive and eight Gram-negative
bacteria. The highest activity was observed against four Gram-positive
(i.e. Streptococcus uberis, Enterococcus faecalis, Bacillus cereus 183,
Equi subsp. zooepidermicus), and two negative bacteria (Pseudomonas
aeuruginosa and Enterobacter cloacae). Unfortunately, neither CF13
nor CF42 showed inhibitory effect against Brucella sp., genus of
importance in human health (Table 1).

Type Indicator bacteria CF13 CF42

Gram-
positive

Bacillus cereus 183 255d 255d

Bacillus subtilis 118 ± 12b 188 ± 12b

Listeria inoccua 198 ± 0c 198 ± 0 c

Listeria monocytognes
Scott 190 ± 15c 198 ± 0 c

Enterococcus faecium 118 ± 12b 118 ± 12b

Enterococcus faecalis 275 ± 17e 275 ± 17e

Staphylococcus lentus 35 ± 0a 35 ± 0 a

Staphylococcus aureus 118 ± 12 245 ± 16d

Streptococcus uberis 285 ± 0e 285 ± 0 e

Str. equi subsp.
zooepidemicus 245 ± 16d 245 ±16d

Gram-
negative

Enterobacter cloacae 217 ± 16e 207 ± 16e

Pseudomona aeruginosa 318 ± 0f 318 ± 0f

Salmonella sp 98 ± 11b 91 ± 11b

Salmonella typhimurium 172 ± 0c 181 ± 15d

Brucella sp 0 ± 0a 0 ± 0a

Shigella sonnei 111 ± 12b 91 ± 11b

Shigella flexneri 198 ± 0d 172 ± 0d

Klebsiella pneumoniae 181 ± 15c 148 ± 0c

Table 1: Inhibitory activity (U) of partially purified bacteriocins of
Bacillus thuringiensis CF13 and CF42 determined by the well-diffusion
method. Values with different letters in the same column are
significantly different as determined by Tukey’s multiple range test (P <
0.05).

Effect of physiochemical parameters on antibacterial activity
We tested the effect of pH and temperature on the antibacterial

activity. Bacteriocins produced by strains CF13 and CF42 showed
activity in a pH range of 5 to 9 pH range with a maximum activity at
pH 6.5 (Figure 1C); they were thermoresistant as they retained activity
even at temperature of 121°C, maintaining a residual activity of 45%
(data not show). Other bacteriocins, such as kenyacin 404, entomocin
420 and tolworthcin 524, are thermoresistants [8]. The proteinaceous
nature of bacteriocins was confirmed by their susceptibility to
proteolytic enzymes.

Figure 1: Identification of Bacillus thuringiensis strains by phase
contrast microscopy and their antibacterial activity using Bacillus
cereus 183 used as indicator strain. (A) Sporulated samples of
Bacillus thuringiensis CF13 (left) and CF42 (right). Crystals and
spores are indicated by arrows (B) Antibacterial activities at growth
different times and (C) Effect of pH on the antibacterial activities of
CF13 and CF42.

Effect of bacteriocins to inhibit another bacterial growth
When bacteriocins were tested against Bacillus cereus 183 (the

indicator strain), a marked bacteriolytic effect was detected by plotting
the cell growth records of the indicator strain with and without the
bacteriocins synthesized by CF13 and CF42 strains (Figures 2A and
2B). Similar results have been observed with other bacteriocins of
Bacillus thuringiensis [13].

Antibacterial activity determined by gel-overlay assay
It was found that both strains CF13 and CF42 produce two proteins

of ~10 kDa and 15 kDa with inhibitory activity against Bacillus cereus
used in this study as indicator bacterium (Figure 2C).

Figure 2: Characterization of bacteriocins using B cereus 183 as
indicator strain. (A) Effect of partially purified bacteriocins on the
growth of B. cereus 183. (B) Lytic effect of bacteriocins of CF13
strain; right panel, B. cereus treated with bacteriocins of Bacillus
thuringiensis CF13; left panel, negative control, cells non-treated
with bacteriocins. (C) Direct detection of the antibacterial activity.
Left, SDS-PAGE; right, gel-overlay assay using Bacillus cereus as
indicator bacterium. Lanes 1a and 1b, crude extracts of CF13; lanes
2a and 2b, crude extracts of CF42. Arrows indicate the relative
position (∼15 kDa and 10 kDa) of the growth inhibition zones
observed after overnight incubation at 28°C.

Discussion
Currently we do not have information about the isolation of Bacillus

thuringiensis strains in the Fernandez Canyon State Park at México.
Here, we selected two Bacillus thuringiensis strains from soil samples
bases on its antibacterial activity. Our purpose was to expand the
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knowledge of bacteria present in a protected area in Mexico and to find
metabolites that might be novel and with potential applied value.

It has been reported that bacteria produce antimicrobial peptides
or bacteriocins to compete and communicate with others
microorganisms by quorum sensing [16]. To date it has been reported
approximately twenty-two bacteriocins of Bacillus thuringiensis, but it
is unknown what percent represent the same bacteriocins [17,18] as it
has only been reported the whole amino acid sequence of four
bacteriocins produced by this bacterium, i.e. two-component
Bacteriocins Thuricin CD, Thusin, Thurincin H and cold-shock
bacteriocin protein, which have molecular masses between 3 and 7
kDa [19-22]. Interesting, by SDS-PAGE we found that both Bacillus
thuringiensis strains produced two proteins of ~ 10 kDa and 15 kDa
with inhibitory activity against Bacillus cereus. Previously we showed
that a native strain of Bacillus thuringiensis synthesized a protein 10
kDa with inhibitory effect against Bacillus cereus, identified as
Thurincin H [8, 14]. It is possible that protein of ~ 15 kDa represent a
novel bacteriocin, but further experiments will be required to
demonstrate or discard it. The highest production of bacteriocins from
Bacillus thuringiensis CF42 and CF13 were observed in the
logarithmic or in the stationary period, respectively [8], which suggest
that they might be different. Also both strains showed a broad
spectrum of activity with inhibitory effect to Gram-positive and Gram-
negative bacteria of importance in human and animal health. The
highest activity was observed against four Gram-positive bacteria such
as Bacillus cereus 183, Str. Equi subsp. zooepidermicus, Streptococcus
uberis, Enterococcus faecalis, and two negative bacterium, i.e.
Pseudomonas aeuruginosa and Enterobacter cloacae. Neither CF13
nor CF42 showed inhibitory effect against Brucella sp, microorganism
of importance in human health. When bacteriocins were tested against
Bacillus cereus, we observed a bacteriolytic effect, likewise to the
observed with other bacteriocins of Bacillus thuringiensis such as
kurstacin 287, entomocin 110, thuricin 7 and thuricin CD [13,23-26].

Conclusion
It was isolated by first time; strains of Bacillus thuringiensis from a

protected area in México called the Fernandez Canyon State Park, and
demonstrate that they synthesize bacteriocins with potential applied
value. It will be necessary to clone the genes responsible for their
synthesis, to know the amino acid sequences and confirm (or discard)
the novelty compared with other bacteriocins of Bacillus thuringiensis
isolated from different sources.
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