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Commentary
The idea that we can activate the immune system to fight cancer is

starting to pay off in clinical practice. Instead of targeting the tumor
itself, as in conventional cancer therapies, activating and mobilizing
the immune system to attack its “abnormal self ” necessitates the
training of the immune system to see a collection of antigens expressed
on tumor cells. We have recently shown that a novel immunogen can
recruit antibodies to breast cancer tumors that can inhibit tumor cell
growth [1]. These vaccine-induced antibodies are cross-reactive with
Tumor Associated Carbohydrate Antigens (TACA), which are
intimately involved in cell survival signaling. The ability of these
antibodies to bind to TACA and interfere with signalling events also
suggest additive or synergistic modality with chemotherapeutics that
are cytotoxic. Most importantly, our studies suggested a potential
clinical benefit to the combination of TACA-reactive antibodies as
illustrated by the multiple antibodies induced with the P10s vaccine in
cancer patients [1]. The sensitization of cancer cell via inhibition of cell
survival pathways, show for the first time that signalling pathways
interrupted by vaccine induced TACA reactive antibodies causes
tumor regression in combination with standard of care
chemotherapeutics.

Progress in our ability to manipulate the immune system led to the
discovery of monoclonal antibodies (mAbs) that are specific to one
epitope of an antigen. MAbs produced ex-vivo are fulfilling their
original promise as pharmaceuticals in cancer treatment [2-5] and, as
investigational tools, by helping investigators fine tune their
manipulations of the immune system and design other immune
targeted therapies. Our experience with the development of an anti-
glycan vaccine allowed us to move the process of producing anti-
glycan MAbs from the ex-vivo to the in-vivo setting and to be able to
induce the production of multiple mAbs in patients using the same
therapeutic agents, our P10 vaccine.

Many novel mAbs continue to enter the clinic, each designed with
modifications to structure aimed at further improving efficacy [6,7]. As
we move into an era of precision and personalized medicine, it will
become increasingly important to develop closer links between
emerging mechanistic insights, mediated by tumor associated antigens
(TAA), and the clinical development of mAbs. Glycans or TACA are
among TAA targeted by mAbs [8,9]. The ideal target of cancer
therapeutics would be a molecule(s) critical for tumor cell survival,
expressed at elevated levels on the tumor cell surface and therapeutic
benefit should be demonstrable with antibody or T cells to this
molecule. By these criteria, TACA stand out as excellent targeted
candidates. TACA are intimately related with pathways that mediate
cell survival. Tumors expressing a high level of certain types of TACAs
exhibit greater metastasis and progression as reflected in decreased

patient survival rate than those expressing low level of these TACAs,
[10]. mAbs targeting glycans that are either in the clinic or under
preclinical development include those for GD2 [7,10-14], and tumor-
associated Lewis (Le) glycans [15,16].

TACA, which are elevated in a wide range of solid tumors, mediate
apoptosis in tumor cells while sparing normal cells, demonstrating
both selectivity and therapeutic activity. When considering this family
of antigens as targets, the first challenge is whether mAbs will trigger
apoptotic signals because many receptor binding antibodies block,
rather than trigger signals. While immunotherapy has focused on
approval of mAbs for passive therapy, there are parallel efforts to
develop immunogens to induce sustained antibody mediated
immunity against TACA [17-20].

Our experience with cancer antigens suggests that TACA are pan-
antigens  shared  across  tumor  types  and   are significantly different
from the ones expressed on normal cells. TACA are pan-targets
because they are intimately involved in cell signalling pathways
associated with all cancer cells. The discovery of glycan pan-antigens
led to a concept of a pan-approach to immune therapy of cancer where
all cancers are targeted by one treatment designed by special
manipulation of the immune system. This concept suggests approaches
to induce and maintain an immune response against multiple TACA,
thus unleashing a powerful multi-prong attack against a tumor. In this
context multivalent forms of TACA-based vaccines in particular are
meant to induce responses across multiple TACAs by inducing
subpopulations of antibodies reactive with the constitutive
components of the multivalent vaccine [21- 23].

In contrast to TACA-based vaccines, we have developed potential
vaccines based on carbohydrate-mimetic peptides (CMPs) [24]. This
approach is similar to using anti-idiotypic antibodies as mimics of
TACAs [9,25]. We have shown that CMPs induce anti-tumor-reactive
humoral [26-28] and cellular responses [29,30]. We have moved one of
these CMPs, with the sequence WRYTAPVHLGDG (referred to as
P10s) conjugated to the Pan-T-cell epitope PADRE, into an early-phase
clinical trial in Stage IV breast-cancer subjects [1]. This CMP was
designed to mimic and induce responses to TACAs that are associated
with glycolipid moieties including the ganglioside GD2 and the LeY
[28,31].

P10s was computer designed to react with the anti-GD2 antibody
ME36.1 and the anti-LeY antibody BR55-2 [28,32]. Therefore, we have
extended the notion of mimicry by considering CMPs as pan-
immunogens, inducing multiple sets of antibodies reactive with
multiple TACAs when immunizing with a single agent [24-29,32].
Conceptually, CMP-induced responses might be a way to manipulate
the immune system to generate beneficial low-affinity antibodies that
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would sidestep a variety of potential side effects from generating high-
affinity antibodies to a particular TACA [28,33] such as GD2 [34].

In keeping with the concept of being a pan-immunogen, P10s was
found to react with several anti-GD2 MAbs that include 3F8 [35],
14.G2a [36] and ME36.1 [37] along with the anti-LeY mAb BR55-2
[15,38]. Unlike the other two anti-GD2 MAb 3F8 and 14.G2a, ME36.1
cross-reacts with GD3 [37]. Notably, in a recent project for
prioritization of cancer antigens, 4 of the 75 selected antigens were
gangliosides (GD2, GD3, fucosyl-GM1, and N-acetyl GM3), and
additional targets, like the EGFR and the VEGFR, are known to
interact with gangliosides [39,40].

Our observation that P10s immunization enhances reactivity to the
ganglioside GD2 and LeY in humans is one example of inducing
responses to multiple TACAs with a pan-immunogen, which has
therapeutic ramifications such as driving epitope spreading. In our
early phase clinical trial we observed some direct clinical benefit in one
of our subjects with metastatic lesions as evaluated before and after
vaccine treatment [1]. Inducing antibodies to multiple TACA can
contribute to overcome immune-escape mechanisms since TACA are
always expressed on tumor cells which increases the therapeutic
potential of this cancer vaccine.

The evidence in this study further serves as a proof-of-principle for
immunization using P10s-PADRE to induce TACA reactive antibodies
that are proapoptotic. Monoclonal antibodies, such as anti-GD2 and -
LeY antibodies, can mediate signaling pathways extracellularly. This
might be accomplished whereby apoptosis signals are transduced via
reduction in the phosphorylation levels of focal adhesion kinase (FAK)
and the activation of a MAPK family member, p38, upon the antibody
binding. Knock down of FAK results in apoptosis and p38 activation.
In this context mAbs have defined mechanistic pathways linked to
their therapeutic function. Of significance then is that the P10s vaccine
can induce antibodies with functionalities similar to mAbs reactive
with GD2 and LeY and through these mechanistic pathways can
function in association with chemotherapeutics to kill tumor cells or
can sensitize tumor cells for more efficient tumor cell killing. This
sensitization concept has now provided an opportunity to test the p10s
vaccine in a phase 2 study involving HER2 negative, ER positive breast
cancer patients in the neoadjuvant setting (NCT02229084, http://
www.aymag.com/promising-breast-cancer-vaccine-clinical-trial-offered-
arkansas/)
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