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Abstract
Grape seed extract (GSE) is a complex mixture of several compounds, mostly represented by polyphenols 

and phenolic acids. Their consumption is safe and is recognized to exert several and meaningful health benefits. 
In particular, grape-related anti-tumoral activity encompasses a wide array of biological mechanisms and cellular 
targets, eventually leading to inhibition of cell growth and to enhanced apoptosis in several cancer cell lines, including 
lung, colon, breast, bladder, leukemia and prostate tumors. Those effects are likely modulated at the molecular 
level through selectively modulating the redox balance and displaying anti-oxidant as well as pro-oxidant actions, 
according to the specific context. GSE-related anti-cancer activity mostly relies on the induced increase in reactive 
oxygen species, followed by the orchestrated down- and up-regulation of several key-molecular pathways, including 
MAPK kinases, PI3K/Akt, NF-kB, cytoskeleton proteins and metalloproteinases. Promising results obtained in vitro as 
well as on animal studies suggest that GSE may have a great relevance as source of potential new pharmacological 
molecules, and could represent an important opportunity for clinical research.
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Introduction
Grape seeds and fruits

Cancer is among the leading cause of death in the Western world and 
its incidence is rising sharply in the developing countries too. By no doubt, 
that trend can be likely ascribed to the world-wide adoption of western 
dietary habits, characterized by high saturated fat diet, low intake of fresh 
vegetables and fruits, with reduced assumption of polyphenolic-rich foods 
(like green tea, soy and grape seeds) [1]. On the contrary, high and regular 
consumption of polyphenolic-rich foods has proven to significantly reduce 
the incidence of breast, lung, prostate and gastro-intestinal human cancers 
[2]. Among those foods, a prominent role is undoubtedly sustained by 
grapes and grape-related aliment and beverages.

From time immemorial grapes have been used both for medicinal 
and nourishment purposes, chiefly in Greece and in Italy. Grapes (Vitis 
vinifera) have been heralded for their medicinal and nutritional value 
for thousands of years: Egyptians ate grapes at least 6,000 years ago, and 
several ancient Greek philosophers praised the healing power of grapes, 
usually in the form of wine. The role that the grape has in the food culture 
of the Mediterranean countries is comparable only to that played by tea 
in among the peoples of Asia, indeed. An impressive body of the current 
scientific literature supports the health benefits claimed by the medical 
tradition. Several epidemiological studies have associated the consumption 
of grapes, wine, and grape juice with a wide variety of health-promoting 
effects, particularly the reduced risk of cancer and cardiovascular diseases 
[3-6]. It is worth of mentioning that a significant linear decrease in risk 
of lung cancer associated with consumption of red wine among ever-
smokers has been recorded by a multiethnic cohort study involving more 
than 80,000 men: consumption of 1-2 cup of wine reduces the risk of 
lung cancer of approximately 60%. A similar trend has been observed by 
other studies [7-10]. Interestingly, a similar pattern has been recorded by 
epidemiological studies performed on Green Tea [11-14]. 

Tea and grape have different chemical composition [15]. Yet, many 
GSE components (epigallo-catechins, procyanidins, flavonoids) are also 
found in Green Tea, and they may well account for the widely recognized 
beneficial effects of tea consumption. However, even if a consistent overlap 

has been observed in between the biological properties of both mixtures, 
yet extracts from grapes and tea differ significantly in their effectiveness, 
given that when they are simultaneously added to cancer cells, a synergistic, 
significant effect can be observed [16]. Yet, the beneficial properties of both 
tea and grape (or grape derived food products), are believed to be related to 
their polyphenolic content [17,18]; and, by no doubt, grapes constitute one 
of the major sources of phenolic compounds among fruits [19].

Grape seed composition

Grape seed composition differs significantly in between different 
cultivars [20-23], namely when white versus red grapes are considered. 
Yet, those differences reflect not only genetic variability, but also highlight 
the impact of vineyard treatments, ripeness grade [24,25], irrigation 
strategy [26,27] and nitrogen fertilization [28]. Even within seeds obtained 
from the same cultivar a significant variability in chemical composition 
has been recorded, and such a result may be likely ascribed to differences 
in the extraction method [29-31]. In addition, several environmental and 
biological factors, such as hyperopic, light, drought, high salinity, cold, 
metal ions, pollutants, xenobiotics, toxins, reoxygenation after anoxia, 
experimental manipulations, pathogenic infection and ageing of plants 
may affect yields and seed quality, mainly by inducing oxidative stress 
[32,33]. Nonetheless, plant cells have a wide array of detoxifying enzymes 
and pharmacologically active, anti-oxidant compounds that scavenge 
Reactive Oxygen Species (ROS), participate in seed survival, and may 
hence display relevant pharmacological activities [34]. Besides some minor 
components, main grape seed constituents are represented by polyphenols, 
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phenolic and hydroxy-benzoic acids. Stylbenes (trans-resveratrol) as 
well, are occasionally found, even if in a few varieties [35]. Polyphenols 
(Flavonoids) is a collective noun given to several classes of structurally 
similar compounds, having a common C6-C3-C6 flavone skeleton in which 
the three-carbon bridge between the phenyl groups is commonly cyclized 
with oxygen. Flavonoids include several classes of compounds: Flavones 
(luteolin), Flavan-3-ols (catechins, epicatechins, epigallo-catechins, 
epigallocatechin-3-gallate, procyanidins), Flavanones (neringein), and 
Flavonols (quercetin, rutin, kaempherol) and Anthocyanins (Table 1) [36]. 
Each class differs from the other according to the degree of unsaturation 
and oxidation of the three-carbon segment [37]. Flavonoids are usually 
present in nature as glycosides: the sugar moiety attached to the flavonoid 
structure affects ease of absorption from the intestinal tract and the 
bioavailability of the compound. Yet, glycosylation lessens the reactivity of 
flavonoids against free radicals and slow-down their intestinal absorption 
[38]. Grape seeds have higher content of both phenolic acids and flavonoids 
(where they account for 60-70% of dry extract) [39] than grape skin and 
whole grape extract, meanwhile resveratrol and anthocyanidins are more 
abundant in the latter two extracts [40].

Several individual grape seed components (Figure 1) have been 
demonstrated to display relevant chemical and biological functions, 
such as antioxidant [41], anti-inflammatory [42], inhibition of platelet 
aggregation [43], antimicrobial [44], and “anti-aging” activities [45]. 
Those properties have been found to be directly associated to the total 
polyphenolic content [46,47] and specifically ascribed to the activity of the 
more effective components, among which ellagic [48] and gallic acid [49], 
epigallocatechin-3-gallate [50], procyanidins [51] and quercetin [52] are 
by far the most important. Gallic acid, procyanidins and epigallo-catechins 
overall account for about 80-90% of dry extract [53], and medical properties 
of grape seeds are generally referred to those molecules, indeed [54]. Yet, 
the contribution of other active, even less represented molecules cannot be 
excluded, given that some biological functions seem to be synergistically 
afforded by interactions among the different components [55]. Namely, 
the well-known anti-oxidant effects exerted by GSE, can only barely 
be explained by the sum of the anti-oxidant activities of each individual 
component. Indeed, correlation analysis showed that none of the identified 
polyphenols had a strong correlation with protection from ROS [56]. 
Thus, it seems that there may be a synergism between polyphenols and/
or between polyphenols and phenolic acids and other phytochemicals. 
Similarly, even if anticancer effects are generally thought to be exerted 
mainly by procyanidins and epigallo-catechin-3-gallate (EGCG), again the 
overall GSE anticancer effect is higher than that obtained by the sum of 
each individual component [57].

Dual Effects of Grape Seed Extract: Anti-Oxidant and Pro-
Oxidant Activities

GSE, as well as many of its individual components have demonstrated 

both in vitro and in vivo to prevent carcinogenesis [58-60], to inhibit cancer 
cell proliferation and to enhance cancer cells apoptosis, often reaching 
efficiency rates equal or greater than that achieved by conventional drugs. 
Yet, the by far most relevant feature of GSE is the dual role displayed 
in normal and cancerous cells. Grape and tea extract are safe, even at 
the highest concentrations [61-63], and exert a wide array of protective 
actions. Indeed, GSE and many phytochemicals inhibit apoptotic process 
and display a strong anti-oxidant effect on normal cells, meanwhile the 
opposite is true for cancer cells: neither growth inhibition nor apoptosis 
have been noticed in normal cells even at higher doses of GSE [64]. How 
and why that paradoxical behaviour occur is still a matter of investigation, 
even if an increasing body of evidence suggest that a possible explanation 
may be provided by the dual role exerted on the intracellular ROS 
formation.

GSE displays pro-oxidant effects on cancer cells
Antioxidant activities of GSE and grape phenolic compounds (mainly 

resveratrol and procyanidins), have been extensively investigated in vitro 
and in vivo [65]. GSE possesses strong free radical scavenging activity [66], 
prevents ROS-induced DNA damage [67], and displays a relevant chelating 
effect on transition metal ions, thus reducing lipid peroxidation [68]. Those 
effects have been deemed even more potent than known antioxidants 
such as vitamin E and ascorbic acid [69]. Some studies have reported an 
enhancing effect of GSE or of its polyphenolic constituents, on several anti-
oxidant enzymes as glutathione (GSH) [70], super-oxide dismutase (SOD) 
[71], catalase [72] and other detoxifying/antioxidant enzymes [73]. GSE-
induced antioxidant enzyme expression is associated with activation of the 
redox-sensitive transcription factor nuclear factor erythroid-2 p45 (NF-
E2)-related factor (Nrf2), through its interaction with the antioxidant-
response element (ARE) or the electrophile-responsive element (EpRE) 
[74,75]. Indeed, Nrf2 plays a key role in up-regulation of many phase II 
antioxidant/detoxifying enzymes, including glutathione peroxidase (GPx), 
glutamate cysteine ligase (GCL), glutathione S-transferase (GST), SOD, 
and NADPH/quinone oxidoreductase 1 (NQO1) [76].

In vivo, dietary supplementation of GSE was shown to reduce 
oxidative stress and improve the glutathione/oxidized glutathione ratio, 
as well as the total antioxidant in a double-blinded randomized crossover 
human trial [77]. Though those results have been often confirmed [78], 
other studies have been unable to do so, showing that GSE  exhibits either 
only a moderate or negligible antioxidant  effect [79,80].

Oxidative stress, resulting from enhanced production of ROS 
overcoming the cellular antioxidant defence, is a key phenomenon in 
chronic degenerative diseases (diabetes mellilitus, cardiovascular illness, 
cancer) [81,82]. ROS participate in triggering the apoptotic process, as 
programmed cell death is tightly regulated by the oxidative environment 
[83]. Dietary GSE strongly reduces rat mucosal apoptosis via modulation 
of both mitochondrial and cytosolic antioxidant enzyme systems together 
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Table 1: Grape seed composition. Principal classes of polyphenols and phenolic acids; red stars evidence compounds found in grape seeds by different analytical stud-
ies [15,19-22,28-30,39-40].
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with an increase in cellular GSH, thus protecting normal colonic mucosa 
from ROS injury [58,84]. Given that GSE exerts a protective anti-
oxidant effect in normal cells exhibiting deficiency of catalase activity or 
glutathione level, it can be hypothesized that grape polyphenols participate 
in controlling intracellular peroxide production [85]. Hence, anti-oxidant 
properties of GSE treatment may efficiently counteract the onset of ROS-
dependent disease, as documented by several studies [86]. Yet, despite the 
popular version diffused by mass-media, it is hardly conceivable that GSE 
or polyphenols may exert a significant effect against cancer development 
by displaying anti-oxidant actions [87].

Indeed, several studies have reported that GSE in cancer cells 
paradoxically enhances ROS production in a significant manner. GSE and 
many polyphenolic compounds induce a relevant increase in ROS and in 

superoxide radical generation, at both the cytosolic and mitochondrial site, 
that could eventually lead to GSH depletion [88]. It is worth noting that 
GSE does not induce hydroxy peroxide (H2O2) increase, thus evidencing 
a deficiency in SOD activity, at least in the cancer cell lines studied. Indeed, 
in SOD-deficient cells, GSE treatment induce ROS-mediated cytotoxicity, 
evidencing that GSE-dependent increase in ROS activity is not efficiently 
counteracted by SOD-dependent transformation in hydroxy peroxide, 
leading to GSH depletion, cellular damage, and increased apoptosis [89]. 
Moreover, pro-oxidant effects of GSE are enhanced in cells lacking SOD 
activity [90], meanwhile co-exposures of polyphenols-treated cancer 
cells with SOD largely prevented ROS formation and DNA damage 
[91]. Considering that the oxidant-dependent toxicity of polyphenols 
is efficiently rescued by co-treatment with SOD, but not with catalase, it 
is unlikely that flavonoids-related pro-oxidant effects could be mediated 

Figure 1: Chemical structures of the principal GSE components.
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by H2O2, but rather by the super oxide anion O2.- , whose activity is 
unaffected by catalase, indeed [92]. This specific feature is displayed by 
the overall extract from grape seed, as pro-oxidant effects triggered by 
individual polyphenols – obtained from tea or grapes – can be significantly 
inhibited by adding catalase in the culture medium [93,94]. Several 
indirect experimental evidences support these observations. Indeed, cell 
culture medium amended with either green tea or with red wine inhibited 
proliferation of rat pheochromocytoma PC12 cells: both supplementation 
generated ROS, and the addition of catalase completely abolished the anti-
proliferative effects of green tea, but only partially reduced that of red wine 
[95]. Apparently, this result would suggest that ROS accounted for the 
total cytotoxic effect of green tea, but only partially for that of red wine. As 
catalase may detoxify only H2O2, it should be hypothesized that anticancer 

actions of GSE may be exerted through the increase of different reactive 
oxygen species, among which H2O2 represent only a negligible fraction. 
In addition, polyphenols-treated cancer cells exhibit activation of both 
early ROS-dependent and late-ROS-independent genes associated with 
cell cycle modulation and apoptosis. ROS-dependent genes activated after 
polyphenols addiction have been identified as early response or biphasic 
genes [96]. By suppressing H2O2 co-amending cell culture with catalase, 
only early ROS-dependent apoptosis is abolished, whereas late apoptosis is 
retarded, as apoptotic cell death still occurred but after a delay of 24 hours. 
That biphasic-effect on cell apoptosis has been reported by many other 
studies performed on tea polyphenols [97,98], indicating that polyphenols 
increase ROS, both sensitive (as H2O2) and insensitive to catalase [99] (as 
superoxide anions) [100], or, alternatively, they may activate an unrelated 

Figure 2: Molecular mechanisms of GSE interactions. GSE interacts with many cellular biochemical and genetic pathways, through which cell proliferation, 
cytoskeleton rearrangement, apoptosis and cell differentiation are modulated. A pivotal key-step is supported by the increase in ROS formation induced in 
cancer cells by GSE through the selective regulation of the redox balance. Acronymous: DISC, death-inducing signaling complex; FADD, Fas associated death 
domain; transmembrane death receptors, DR4, DR5; tumor necrosis factor-related apoptosis-inducing ligand (TRAIL); Insulin, INS; cAMP response element-
binding protein ,CREB); poly-ADP-ribose polymerase, PARP; FOXO1, forkhead box O1; histone androgen acetyltransferase, HATs; Apoptosis Inducing factor, 
AIF; Apoptotic protease activating factor 1, APAF; Hypoxia-inducible factor 1-alpha, HIF-α; testosterone, TEST; Androgen receptor, AR; Inositol-3-phospgate, 
IP3; Phosphatydyl-Inositol-3-phosphate, PIP3; Calmodulin, CaM; Calmodulin kinase, CaMKK; PKC, protein kinase C; p53 upregulated modulator of apoptosis, 
PUMA; phosphatase and tensin homologue deleted on chromosome ten, PTEN; nuclear factor kappa B, NF-kB; inhibitor of kappa B, IK-b (comprising the 
subunits IKKα,β,γ; Mouse double minute 2 homolog, MDM2; activator protein 1, AP-1; Nitric oxide, NO; urokinase-type plasminogen activator, uPA; matrix 
metalloproteinases,MMP2-9; Topoisomerase-I, Tp-Is 1; Prostaglandin-endoperoxide synthase 2 or cyclooxygenase-2, COX-2; prostaglandin E2, PGE2; 5’ AMP-
activated protein kinase, AMPK; ETS domain-containing protein, Elk-1; cyclin, C; cyclin-dependent kinases, CDK; ubiquitination complex, Ub; cytoskeleton, CSK; 
extra-cellular matrix, ECM; epithelial-mesenchymal transition, EMT.
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recently been shown to lead to increased generation of ROS and apoptosis 
[121]. Furthermore, mitochondria are central players in cellular Ca2+ 
signalling given that they contribute in shaping and buffering cellular 
Ca2+ signals [122,123]. It is widely recognised that Ca2+ displays growth 
inhibiting and differentiation-promoting activities in a variety of normal 
and malignant epithelial cells. We have reported [103] that intracellular 
Ca2+ rapidly increased after the addition of GSE to cell cultures. This 
effect might be due to the mobilisation of intracellular Ca2+ stores, or to 
the influx of extracellular Ca2+. In order to address these issues, Caco-2 
colon cancer cells were incubated in a Ca2+-free medium containing the 
Ca2+ chelator EGTA, before addiction of GSE obtained from different 
grape cultivars (Red Globe, Italia and Palieri). Addition of EGTA does 
not modify intracellular concentration of Ca2+ in Red Globe-treated cells, 
indicating that  modification in intracellular Ca2+ was tightly dependent 
on extracellular Ca2+ influx in this very case. However, addition of EGTA 
to the medium supplemented with GSE obtained from Italia and Palieri 
cultivars, slightly reduced but did not completely inhibit the increase 
observed in Ca2+ intracellular levels, thus demonstrating that Ca2+ release 
in these specific cases is largely due to the depletion of intracellular Ca2+ 
stores. Yet, addition EGTA abolished almost completely GES-induced 
apoptosis on colon cancer cells as well as mitochondrial depolarisation, 
thus suggesting the two phenomena are entrenched. Further addition 
of NAC did not modify significantly those results, suggesting that ROS-
induced Ca2+ release is a mandatory step in anticancer effects triggered 
by GSE. As previously suggested [124], those data outline a crosstalk 
signalling in between Ca2+ and ROS: ROS may regulate the activity of 
Ca2+-activated channels and, at the same time, increased Ca2+ levels could 
reinforce ATP synthesis-induced ROS generation. GSE-induced elevation 
in intracellular calcium levels is also associated to a dramatic down-
regulation of Calmodulin A (CaM) in breast cancer cells [125]. CaM 
binds to calcium and hence activates several pathway involved in cancer 
progression, and increased levels of CaM have been found in cancer cells 
[126]. However, uncoupled Ca2+ activates the RAF/MEK/ERK pathway 
and promotes phosphorylation of MAPKp38 and JNK, eventually leading 
to over-expression of p53 [127].

GSE and Cell-Cyle Modulation
Disruption of the normal regulation of cell-cycle progression and 

division are important events in the development of cancer. Several 
proteins are known to regulate the timing of the events in the cell cycle. 
Major control switches of the cell cycle are the cyclins and the cyclin-
dependent kinases (CDKs). GSE and many of its constituents (chiefly 
EGCG and resveratrol) [128] have been demonstrated to exert their 
antiproliferative effects on leukemia [129],ovary [130], lung [131,132] , 
head and neck [133], prostate [51,134], breast [135,136] and colon cancer, 
both in vivo and in vitro [137-139]. It is worth noting that, as previously 
outlined, either native GSE or Tea extract, display a significant greater anti-
proliferative effect than isolated compounds or synthetic mixtures [140]. 
GSE treatment resulted in a marked reduction in the expression levels of 
CDK2, CDK4 and CDK6 [141]. Similarly, a marked reduction in cyclins 
D1, D2 and E, and an increase expression of negative regulators of the 
cell cycle (Cdki, such as p21 and p27) were observed after GSE treatment, 
eventually inducing a dramatic inhibition of cell growth, and a consequent 
cell cycle arrest in G1, S or G2/M phase [142]. The antiproliferative GSE-
based effect involves several molecular targets, including up-regulation of 
Rb phosphorylation and down-regulation of E2F, through modulation of 
the EGFR-ERK1/2 pathway [133].

Eventually, those signals converge and activate cyclins, which bind 
to Cdki to induce cell cycle progression towards S phase. CDKs activity 
is required to allow cancer progression, and their functions are tightly 

ROS-independent apoptotic pathway.

Furthermore, several studies have noticed greater depletions of 
intracellular GSH in cancer than in normal cells upon their exposures to 
polyphenols, including grape seed and tea polyphenols extract [101]; in 
turn, by blocking the recycling of intracellular GSH with an irreversible 
inhibitor of glutathione reductase, antiproliferative effects of pholyphenols 
are greatly potentiated [102]. On the contrary, by adding N-acetyl-cysteine 
- a precursor in the synthesis of glutathione – generation of intracellular 
ROS was strongly lessened upon exposure of cancer cells to GSE or tea-
derived polyphenols [103-105]. Flavonoids-induced reduction in GSH 
availability is however significantly dependent on the dose, given that 
very low, non-toxic concentrations of quercetin enhance the synthesis of 
GSH in monkey cancer kidney cells through up regulation of γ-glutamyl-
cysteine synthetase, whereas exposure of cells to high concentrations 
of GSE or grape/tea polyphenols led to elevated levels of ROS, which 
quickly depleted GSH stores and thereby increase cellular susceptibility to 
oxidative free radical attack, resulting in cell death by either apoptosis and/
or necrosis [106,107].

These results may contribute to explain the aforementioned paradoxical 
behaviour of GSE, highlighting how the pro-oxidant or anti-oxidant effect 
is context-dependent, as it is shaped by the overall architecture of the 
redox balance. It should be outlined that such effects have been recorded 
only for high doses of bioactive compounds, given that a very low GSE 
concentration (in the range of 1-10 nm) prevents ROS-induced oxidative 
cell damage, restores intracellular glutathione content, and ameliorates 
mitochondria-mediated and death receptor-mediated apoptosis in both 
normal and cancer liver cells [108].

Those effects have been recorded in several cancer lines amended with 
GSE by ours and other groups [64, 103,109-111], and noticed also when 
using single polyphenolic molecules [112-114]. It is worth noting that the 
pro-oxidant effect is a very early event (occurring after 5-30 minutes after 
GSE supplementation), and it happens well before the subsequent onset of 
apoptosis and cell cycle inhibition. Pre-treatment with N-acetyl-cysteine 
(NAC) or other ROS-scavenging molecules abolishes almost completely 
GSE-dependent anticancer effects, and such results indicate that oxidative 
stress represents a meaningful initiating step. Therefore, GSE-induced 
oxidative stress in cancer cells should be considered the key-event, 
preceding the complex molecular cascade leading to GSE-dependent 
cancer inhibition.

Ros, mitochondrial potential and calcium

GSE, as well as many grape polyphenols and phenolic acids, have been 
shown to induce significant inhibition of cell proliferation and to enhance 
apoptosis in several cancer cell lines. Those effects occur at both low and 
high GSE concentration, the necrotic processes becoming more evident 
for the highest GSE doses. Such effects have been recently demonstrated to 
be dependent on ROS formation, occurring early after GSE administration 
in lung, bladder and colon cancer cells [103,115]. Concomitantly to 
ROS enhanced formation, the mitochondrial membrane potential was 
significantly reduced, dose and time-dependently in GSE treated cancer 
cells [116]. Similar findings have been also reported by adding tea 
polyphenols to a wide array of cancer cell lines [117]. Those effects were 
long-lasting, as the decrease in mitochondrial potential still remains after 
3-6 hours [118,119]. The mitochondrial transmembrane potential is often 
used as an indicator of cellular viability and metabolic activity, and its 
disruption has been involved in a variety of apoptotic phenomena [120].

Moreover, mitochondria have also been implicated in ROS generation 
during apoptosis. Indeed, reduced mitochondrial membrane potential has 
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regulated by Cdki. The increased expressions of Cdki together with 
decreased expression of cyclins (namely Cyclin-1) [143], and CDKs 
on GSE-treated cancer cells suggest that GSE might be effective as a 
chemotherapeutic agent for the treatment of a wide array of tumors. Those 
effects are likely to involve GSE-mediated inhibition of PI3K/Akt pathway, 
down-regulation of the epidermal growth factor receptor (EGFR) [144], 
and interference with NF-kB activity (Figure. 2).

Pro-Apoptotic Effects of GSE
GSE and MAPK kinases

The extensive investigations with the GSE have identified various 
molecular targets involved in GSE-mediated cancer cell apoptosis.

The PI3K/Akt pathway plays a pivotal role in mammalian cell survival 
signaling and has been shown to be activated in various cancers [145]. 
Indeed, phosphorylated PI3K and Akt are thought to be key factors in 
modulating down-stream kinases activation and NF-kB-dependent 
pathways. It is worth of noting that grape and tea polyphenols [146], 
as well as GSE, have been shown to decrease the PI3K levels and Akt 
phosphorylation, even enhancing proteasome degradation of Akt in 
several cancer cell lines [147]. Down-regulation of the phosphorylated 
form of PI3K is a key event in Akt regulation: Akt binds to phosphatidyl-
inositol-3-phosphate (PIP3), and PI3K induces its phosphorylation at 
the carboxy-terminal of Ser473 residue. PI3K is negatively regulated by 
the phosphorylated form of phosphatase and tensin homologue deleted 
on chromosome ten (PTEN), a lipid phosphatase that catalyzes the 
dephosphorylation of PIP3 and thus inhibit PI3K/Akt phosphorylation 
[148]. Absence of PTEN strongly correlates with activation of PI3K/Akt 
in tumour cell lines [149], whereas GSE significantly decreased PTEN 
phosphorylation, and thereby increased its negative regulation on the PI3-K 
pathway [150]. Phosphorylated Akt may in turn activate survival pathways 
by directly phosphorylating specific targets. Indeed, Akt negatively 
regulates factors that promote the expression of death genes (Bad) [151] 
and positively regulates antiapoptotic factors (Bcl-2, CREB) [152,153] and 
pro-survival genes (FHKR, NFkB) [154,155]. GSE significantly inhibited 
Akt-dependent FKHR phosphorylation in Caco-2 cells, thus leading to 
FHKR proteins residing predominantly in the nucleus where they are able 
to promote transcription of pro-apoptotic target genes such as Fas-L and 
Bim through specific DNA elements in their promoters. In addition, GSE 
suppresses Akt-related effects on CREB, NFkB [135], BAD and Bcl-2, thus 
promoting an overall pro-apoptotic effect on cancer cells.

MAPKs signaling pathway is an important upstream regulator of 
transcriptional factor activities and their signaling affects a wide variety of 
extracellular stimuli into intracellular events and thus control the activities 
of downstream transcription factors implicated in cancer development and 
progression [156]. GSE has been reported by many studies to enhance the 
activation of JNK and p38MAPK, through a pathway requiring intracellular 
calcium increase [103,157]. In turn, p38MAPK enhances apoptosis through 
Bcl-2 inactivation, caspase increase and mitochondria depolarization 
[158]. That effect has been related to ROS [159] and intracellular calcium 
increase [103], and it is generally thought to participate in enhancing 
the overall GSE-induced apoptotic action on cancer cells. Yet, opposite 
findings have been recorded in normal cells [160]. Moreover, GSE and 
several different polyphenols from both grape and tea have been showed to 
exert contradictory effects on ERK1/2 activation: meanwhile some studies 
reported epigallocatechin-3-gallate phosphorylation of ERK1/2 [161], we 
and others have observed a selective inhibition of ERK phosphorylation in 
colon and prostate cancer cells treated with GSE [103,147,162,163], or even 
EGCG [164,165]. Indeed, both down- and up-regulation of ERK activation 
in cancer cells have been reported occurring after treatment with GSE or 

isolated polyphenols [115]. Those contradictory results may be ascribed 
to differences in the cell culture, to dose-dependent dual effects, or to the 
prevalence of a specific single bioactive component, given that opposite 
effects on ERK activation have been documented by using different single 
bioflavonoids [166]. Therefore, data provided by experimental models 
need to be interpreted according to a systemic approach, i.e. by taking into 
consideration the dynamic interplay of several other observables [167].

In some way GSE and many dietary pholyphenols seem also to 
modulate the complex array of PKC iso-enzymes, leading to increased 
PKCα activation [168]. GSE may activate PKC, namely the PKCα and 
PCKδ isoforms, probably by increasing intracellular Calcium [169], and 
promoting PCKδ translocation into the nucleus, where PKC act as pro-
apoptotic factor [170]. PKCα, together with PCKδ, could participate in 
inhibiting Akt phosphorylation and in triggering the extrinsic apoptotic 
cascade, especially in prostate cancer cells [171]. However, the interplay in 
between GSE and PKC dynamics is very poorly understood and deserves 
further investigation.

Several studies have indicated that elevated levels of inflammation 
modulators are functionally related to tumor promotion. Prostaglandins 
are produced in abundance by the metabolic conversion of arachidonic 
acid by COX-2, which has been known to be upregulated in a number of 
malignancies. Four transcription factors including nuclear factor kappa B 
(NF-kB), CCAAT/enhancer-binding protein (C/EBP), activator protein 
1 (AP-1) and CRE-binding protein (CREB) have been identified to bind 
to the cis-acting elements required to promote COX-2 expression [172]. 
Among the aforementioned factors, NF-kB and AP1 play a relevant role 
in cancer development and progression [173]. The NF-kB proteins can be 
activated by a wide variety of stimuli that relieve NF-kB from the inhibition 
exerted by IkBα. NF-kB is indeed constrained in the cytosol by binding 
to IkBα. NF-kB activation requires necessarily that this association be 
disrupted. Almost all activators of NF-kB do so by phosphorylating IkBα 
when bound to NF-kB–Ikα kinases resulting in accelerated degradation 
NF-kB and nuclear translocation of free NF-kB [174]. In the nucleus, NF-
kB targets different gene promoters, enhancing pro-survival pathways and 
even COX-2 genes expression. In vitro treatment of human epidermoid 
carcinoma A431 cells with GSE down-regulates the constitutive expression 
or basal level of NF-κB/p65 and IKKα and simultaneously inhibits the 
degradation of IκBα protein [175]. Indeed, many polyphenols as well 
as GSE have been proven to down-regulate NF-kB [136,178-180], and 
COX-2 expression [179,180]. As for EGCG extracted from tea [181], NF-
kB down-regulation by GSE may also involve inhibition of Her-2/neu 
receptor tyrosine phosphorylation, an oncogene member of the EGFR 
family thought to play a relevant role during cancer development. To our 
best knowledge, among dietary flavonoids, only EGCG [182], Flavones 
[183,184] and mangiferin [185] (an apple procyanidin), share with GSE 
that meaningful, inhibitory property on NFkB activation. Eventually, 
GSE has been reported to down-regulate the activator  protein-1 (AP-1) 
levels in cancer cells [186], likely through different, synergistic biochemical 
pathways, as it was demonstrated by using isolated polyphenols [187]. 
AP-1 is very often portrayed as a general, nuclear decision maker that 
determines the final fate of the cell upon stimulation by extracellular signals, 
and its down-regulation has been claimed to participate in inhibiting anti-
apoptotic and pro-survival pathways [188].

Additionally GSE and tea polyphenols have been demonstrated to 
modulate androgen [189] as well as estrogen signalling [190,191], involving 
a plethora of growth factor, as EFG/EGFR [192], PDGF [193], VEGF 
[194] and IGFBP-3 [195]. Overall, these effects may converge towards the 
aforementioned pathways, enhancing the anticancer activity displayed by 
GSE on cancer cells.
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Extrinsic and intrinsic apoptotic pathway

The process of apoptosis is highly complex, and involves a cascade 
of molecular events, distributed along two main pathways: the extrinsic 
and the intrinsic or mitochondrial-derived pathway [196]. Both of them 
interact in some way and eventually converge into the same executioner 
pathway leading to activation of caspase-3 and PARP [197]. The extrinsic 
pathway encompasses interactions in between transmembrane death 
receptors, including DR4 and DR5, two members of the tumor necrosis 
factor (TNF) receptor gene super family. Cooperative participation of the 
tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and 
the Fas associated death domain (FADD), leads to the formation of the 
death-inducing signaling complex (DISC), which triggers the autocatalytic 
cleavage/activation of procaspase-8. Activation of caspase-8 ends-up 
eventually in activation of terminal caspases (caspase-3) and PARP. On 
the other hand, intrinsic pathway is activated by several different stimuli, 
leading to a dramatic decrease in transmembrane mitochondrial potential 
and consequently release of cytochrome c and pro-apoptotic effectors 
across the mitochondrial membrane. Further events largely depend on 
the balance between pro-apoptotic or anti-apoptotic proteins released 
from mitochondria. Anti-apoptotic effectors include Bcl-2, Bcl-xl; pro-
apoptotic proteins are represented by Bik, Bim, Bak, Bad and Puma. 
Activation and stabilization of p53, reduced levels of MDM2 and PI3K and 
phosphorylated Akt, may synergistically shift the equilibrium towards pro-
apoptotic proteins, eventually enhancing the system in moving to the next 
apoptotic steps. Increased levels of p53, in turn, may lead to augmented 
levels of Puma, Bak and p21, which translocate into mitochondria 
reinforcing membrane depolarization and further cytochrome c release 
and ROS formation [198].

Compelling data have been reported evidencing GSE and many of its 
bioflavonoids induce apoptosis in cancer cells through both the intrinsic 
as well as the extrinsic pathway by down-regulating anti-apoptotic 
proteins and up-regulating several pro-apoptotic factors, eventually 
leading to activation of caspases 9 and 3 [116,132,137,139	 , 1 9 9 -
201]. Those effects are highly dependent on inhibition of the PI3K/Akt/
survivin pathway [202], and on the p38MAPK/JNK/ERK modulation 
[203], and have been recently confirmed by in vivo studies [204,205].  
Moreover, that pro-apoptotic effect is highly specific, as normal cells are 
generally insensitive to GSE and other dietary polyphenols [137,205,206]. 
It is worth of noting that such effects occur irrespective of the p53 status 
of the cells. GSE was originally reported to induce apoptosis in a greater 
extent in p53-expressing cancer cells (through up-regulation of p53, 
Bak, p21, and Puma), than in p53-deficient samples [207]. Indeed, some 
GSE components specifically recognize p53 as a target and lead to p53 
activation by binding and interacting to integrin ανβ3 [208]. Furthermore, 
a selective enhancing effect on p53 has been attributed to both ellagic acid 
[209] and EGCG [210], which seems to mandatory require p53 to exert its 
anti-apoptotic effects on cancer cells [211]. However, several studies found 
that the cytotoxic effect exhibited by the overall extract from grape seeds 
is actually independent of p53 status of the cancer cell lines [57,133,212]. 
That observation is highly significant, given the fact that one of the most 
common genetic defects found in cancers involves deletion/mutation of 
the TP53 gene, which encodes for the p53 protein [213].

The caspase-dependent pathway might not be the only apoptotic 
mechanism triggered by GSE (at least in colon cancer cells), bearing 
in mind that a slightly rise in cleaved PARP may be recorded before an 
increase in caspase activity could be observed. Indeed, we have shown 
that apoptosis inducing factor (AIF), known to induce apoptosis via a 
caspase-independent mechanism, increases early in GSE-treated samples 
and anticipate caspase-dependent apoptosis [137]. Those results have 

been further confirmed [109]. Furthermore, both caspase-dependent and 
caspase-independent apoptosis has been documented in prostate cancer 
cells after GSE treatment. Even in this case, addition of the ROS-inhibitor 
NAC prevents almost completely the grape-induced programmed cell 
death [214]. Involvement of AIF-mediated apoptosis in EGCG-treated 
cancer cells has also been documented [215,216]. Thus, GSE-induced 
apoptosis in several cancer cell lines can be considered a biphasic process, 
obtained through both caspase-dependent and caspase-independent 
pathways. 

Cytoskeleton, ECM-Interactions and EMT-Transition
GSE anticancer actions are not restricted to cell growth inhibition and 

promotion of apoptosis. Some studies have linked the anti-cancer properties 
of dietary and tea polyphenols to the induced changes in cytoskeleton 
architecture and matrix metalloproteinases (MMPs) expression. Indeed, 
tea flavonoids down-regulate F-actin and 67 kDa-laminin receptor, thus 
inhibiting the myosin II regulatory light chain [217]. Those effects involve 
also polyphenols-binding to α2β1-integrin, followed by reorganization of 
the cytoskeleton, phosphorylation of focal adhesion kinases, and MMPs 
down-regulation [218].

Similarly, some preliminary reports suggest that cytoskeleton could 
be a target for GSE activity. Very interesting data have showed that GSE 
interact with some cytoskeletal proteins, favouring the cytosolic re-
localization of β-catenin and down-regulating fascin expression [135]. 
Fascin is a highly conserved actin-bundling protein that localizes to 
microspikes and filopodia, participating in motility control [219]. Fascin 
has been found over-expressed in large numbers of metastatic cancers 
[229]. Fascin expression is significantly down-regulated by adding GSE to 
breast cancer cells culture, thus hindering the motility capability of treated 
cells, as evidenced by the migration assay [135]. Indeed, GSE-treated 
cancer cells exhibited less motility and invasiveness, a meaningful effect 
that should be ascribed, at least in part, to the inhibited activity of different 
MMPs. Conversely, we have observed [135] that GSE greatly inhibited  
MMP-2 and MMP-9 expression, as well as urokinase-type plasminogen 
activator (uPA), a key factor which mediates cellular invasion both directly 
by degrading members of the matrix proteins [221] and indirectly by 
modulating MMPs activation. A similar pattern has been observed by 
treating cancer cells with resveratrol [222], resveratrol analogues [223], 
or other dietary proto-anthocyanidins [224] and polyphenols [225-227]. 
It is interesting that effects on metalloproteinases, at least when referred 
to EGCG-treated cancer cells, have been deemed as a consequence of 
increased release of super oxygen radicals [228]. Additionally, it has been 
reported that GSE enhances the levels of epithelial (E-cadherin, cytokeratins 
and desmoglein-2) and reduces the levels of mesenchymal (vimentin, 
fibronectin, N-cadherin and Slug) biomarkers [144]. Overall those results 
suggest that GSE may efficiently counteract the epithelial-mesenchymal 
transition as well as the invasivity of cancer cells, by remodelling the 
cell-matrix interactions and stabilizing collagen architecture [229,230]. 
Those findings shed light on the mechanisms supporting the observed 
anti-metastatic property of GSE. Indeed, preliminary experimental 
investigations on animals showed that GSE significantly inhibits lung [136] 
and bone [231] metastasis from mouse breast cancers. Such preliminary 
results disclose a very new perspective in understanding the anticancer 
effects displayed by GSE.

Conclusion
Since ancient times, in various cultures and religions, there has been a 

strong belief that alcohol offers important health benefits. In recent years, 
the idea that regular, moderate alcohol consumption protects against 
cardiovascular disease and degenerative diseases has gained momentum. 
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A large number of studies have shown a significant inverse relationship 
between wine and/or grape consumption and mortality from all causes 
[232]. Specifically, a moderate wine consumption as well as regular intake 
of grape fruits seem to ensure an overall benefit in reducing the risk of dying 
from heart disease or cancer by approximately 40-60% [233,234]. During 
the last two decades, those data received a convincingly confirmation by a 
huge body of experimental investigations carried out in vitro as well in vivo 
models [235,236], demonstrating how GSE can hamper carcinogenesis 
and even counteract cancer development and progression, by inducing 
apoptosis and cell cycle arrest.

Is rather paradoxical that GSE promotes such effects by first enhancing 
intracellular ROS. ROS are thought to play a relevant role at the very 
beginning of the carcinogenic process, indeed. However, they behave 
really akin a double-edged sword, given that when their intracellular 
levels overwhelm the cellular antioxidant capacity, ROS increase ends 
up being detrimental to cells survival [237]. By taking into consideration 
how important ROS-induced apoptosis could be in improving current 
therapeutic anticancer strategies without adversely affecting normal cells 
[238], it can be concluded that GSE supplementation promises to be a 
reliable, new pharmacological opportunity that deserves much more 
thoughtfulness in both experimental and clinical studies. Indeed, GSE have 
shown that it is well tolerated and is considered safe as dietary supplement 
for human consumption, even at the highest doses and for long-lasting 
period of administration [239,240].

Both epidemiological and experimental studies currently support 
the beneficial effects of dietary pholyphenols and namely, of GSE. Several 
bioactive compounds have been identified and their activity has been 
documented, both in vitro and in vivo. However, the key question here is 
whether a purified component (whatsoever its effectiveness should be) has 
the same health benefit of the mixture from which it has been extracted. 
Indeed, it has long be recognized that GSE displays synergistic effects and 
additive interactions that potentiate the activity of individual components, 
thus suggesting that these compounds will exert their bioactivities only 
when harvested or delivered as natural mixtures from plant cell donors 
[241,242]. Likewise, although most experimental data have demonstrated 
the relevant anticancer role sustained by EGCG as the prevalent green 
tea constituent, the overall biological activity of green tea is thought to 
require the cooperative action of several components, rather than a single 
molecule [243,244]. Dietary phytochemicals are generally embedded into 
complex mixtures that often act in a synergistic fashion [245,246]: the 
isolated pure compound either loses its bioactivity, becomes unstable, or 
may not behave the same way as the compound in whole foods, as it has 
been demonstrated for a lot of phytochemicals, including the well-known 
anti-oxidant vitamin C [247,248]. In addition, diversity in molecular size, 
polarity, and solubility, may affect the bioavailability and distribution of 
each phytochemicals in different macromolecules, subcellular organelles, 
cells, and even tissues. Those considerations may explain the contradictory, 
even paradoxical results obtained in chemopreventive trials by using 
purified, single compounds [249,250]: no single molecule can replace the 
combination of natural phytochemicals in fruits, vegetables or overall 
grape seed extract in achieving the observed health benefits.

Thus, it is now “widely believed that the actions of the dietary 
supplements alone do not explain the observed health benefits of diets 
rich in fruits, vegetables, and whole grain, because, taken alone, individual 
molecules studied in clinical trials do not appear to have consistent 
preventive effects” [251].

Compelling data strongly suggest that grapes and grape-based 
products exert significant anticancer effects, as demonstrated by studies 
performed on cell culture and animal models. Grape polyphenols enhance 

ROS levels in cancer cells, leading then to a wide array of molecular and 
genetic changes, including phosphorylation of MAP-kinases, inhibition 
of PI3K-Akt and NF-kB pathways, down-regulation of cyclins and CDKs, 
and activation of both extrinsic and intrinsic apoptotic pathways. By that 
way, GSE selectively hinders cell proliferation and strongly enhances 
apoptosis. Despite the many challenges for dietary natural products 
caused by lack of standardization, composition variability and the limited 
reporting of adverse effects [252], such ‘mixtures’ have a great relevance as 
source of potential new pharmacological molecules and may represent an 
important opportunity for clinical research that should not be neglected. 
Considering the limited therapeutic options still available against several 
types of cancer, results herein reported indicate GSE could be thought as 
a new valuable treatment. Yet, clinical studies are urgently warranted in 
order to support this attractive hypothesis.
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