alexa Antileishmanial and Trypanocidal Activities of Extracts and Aporphine Alkaloids Isolated from Monodora Genus (Annonaceae) | Open Access Journals
ISSN: 2472-0992
Journal of Pharmacognosy & Natural Products
Like us on:
Make the best use of Scientific Research and information from our 700+ peer reviewed, Open Access Journals that operates with the help of 50,000+ Editorial Board Members and esteemed reviewers and 1000+ Scientific associations in Medical, Clinical, Pharmaceutical, Engineering, Technology and Management Fields.
Meet Inspiring Speakers and Experts at our 3000+ Global Conferenceseries Events with over 600+ Conferences, 1200+ Symposiums and 1200+ Workshops on
Medical, Pharma, Engineering, Science, Technology and Business

Antileishmanial and Trypanocidal Activities of Extracts and Aporphine Alkaloids Isolated from Monodora Genus (Annonaceae)

Joël Dade1, Landry Kablan2, Barthélemy Attioua1, Christian Bories3, Souhalio El Hadji Bamba1, Merlin Mensah4 and Gustav Komlaga5*

1Laboratoire de Chimie Organique et de Substances Naturelles, Université Félix Houphouët-Boigny, Abidjan, République de Côte d'Ivoire

2UFR of Biological Sciences, Université Péléforo Gon Coulibaly, Korhogo, Côte d’Ivoire

3Department of Herbal Medicine, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana

4Laboratory of Chemotherapy Antiparasitic, UMR BioCIS, Université Paris-Sud, Paris-Saclay University, Châtenay-Malabry, France

5Department of Pharmacognosy, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana

*Corresponding Author:
Gustav Komlaga
Department of Pharmacognosy
Kwame Nkrumah University of Science and Technology
Kumasi, Ghana
Tel: +233-322060366
E-mail: [email protected]

Received Date: July 10, 2017; Accepted Date: July 28, 2017; Published Date: July 31, 2017

Citation: Dade J, Kablan L, Attioua B, Bories C, El Hadji Bamba S, et al. (2017) Antileishmanial and Trypanocidal Activities of Extracts and Aporphine Alkaloids Isolated from Monodora Genus (Annonaceae). J Pharmacogn Nat Prod 3:136. doi: 10.4172/2472-0992.1000136

Copyright: © 2017 Dade J, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Visit for more related articles at Journal of Pharmacognosy & Natural Products

Abstract

Leishmaniasis and trypanosomiasis are protozoan diseases caused respectively by the kinetoplastid protozoan Leishmania parasites transmitted by the female phlebotomine sandflies and Trypanosoma parasites transmitted by the tsetse fly. In the search for agents from tropical medicinal plants to treat these two neglected tropical diseases, serially extracted petroleum ether, dichloromethane and methanol extracts of the leaves of Monodora crispata and Monodora brevipes, and eleven aporphines alkaloids isolated from the dried powdered leaves of the two plants were evaluated against Leishmania donovani promastigotes and Trypanosoma brucei brucei trypomastigotes. The extracts of both plants and the isolated compounds displayed varied levels of antiprotozoal activities. The oxoaporphine compounds, (+)-anolobine (7) and (+)-listeferine (8), exerted the most significant activity against L. donovani (IC50: 14.59 μM) and T. brucei brucei (LC100: 50.02 μM) respectively. This is the first report on the antiprotozoal activity of the isolated compounds. The results offer potential for further studies of the oxoaporphines for enhanced antiprotozoal activity.

Keywords

Antileishmanial; Trypanocidal; Monodora; Leishmania donovani; Trypanosoma brucei brucei; Aporphine alkaloids

Introduction

Leishmaniasis and trypanosomiasis are separate groups of arthropod-borne diseases of humans and other animals caused by infection with protozoan hemoflagellates of the genus Leishmania and Trypanosoma respectively. Both genera belong to the Trypanosomatidae family of the order Kinetoplastida [1]. These kinetoplastid diseases also referred to as Neglected Tropical Diseases (NTDs), are a diverse group of communicable diseases that prevail in tropical and subtropical conditions in 149 countries and affect more than one billion people, costing developing economies billions of dollars every year [2].

The genus Leishmania has more than 20 species. These are transmitted to humans by the bites of infected female phlebotomine sandflies which, breed in forest areas, caves, or the burrows of small rodents. There are three main forms of the disease: Cutaneous leishmaniasis which is the most common form of leishmaniasis and causes skin lesions, mainly ulcers, on exposed parts of the body, leaving life-long scars and serious disability; visceral leishmaniasis or kala-azar, which is fatal if left untreated in over 95% of cases and is characterized by irregular bouts of fever, weight loss, enlargement of the spleen and liver, and anaemia; and mucocutaneous leishmaniasis which leads to partial or total destruction of mucous membranes of the nose, mouth and throat [2]. According to WHO [2] an estimated 700,000 to 1 million new cases and 20,000 to 30,000 deaths occur annually.

Human African trypanosomiasis (HAT), also known as sleeping sickness is often fatal if left untreated [3]. The disease takes 2 forms, depending on the parasite involved: Trypanosoma brucei gambiense found in 24 countries in west and central Africa currently account for 97% of reported cases of sleeping sickness and causes chronic infection. The other, Trypanosoma brucei rhodesiense found in 13 countries in eastern and southern Africa represents fewer than 3% of reported cases. This causes acute infection. A third form known as American trypanosomiasis or Chagas disease occurs mainly in Latin America. The causal organism belongs to a different Trypanosoma subgenus and is transmitted by a different vector [4].

The drugs that are currently used for the treatment of these neglected tropical diseases suffer the limitations of toxicity, variable efficacy, requirements for parenteral administration and/or lengthy treatment regimen [3]. As a result, the search for new drug prototypes is an important requirement that needs to be pursued until the burden of these diseases can be reduced or eliminated. In the past few years, the interest in natural products as a potential source for the treatment of parasitic diseases has increased [5-8]. Traditionally, plants have been used for the treatment of protozoan diseases and phytotherapy has over the years received considerable attention in the search for alternative compounds with antiparasitic activity [9,10]. In our search for chemical agents from tropical medicinal plants for the treatment of Leishmaniasis and Trypanosomiasis , we evaluated eleven compounds, isolated from Monodora crispata and Monodora brevipes together with the serially extracted organic solvent extracts of the two plants against Leishmania donovani promastigotes and Trypanosoma brucei brucei trypomastigotes.

Materials and Methods

Plant materials

Leaves of M. crispata and M. brevipes were collected in August 2010 in Diapodoumé (South of Côte d’Ivoire). They were authenticated by Aké Assi from the Centre National de Floristique (Université de Cocody-Abidjan). Herbarium specimens were deposited at the Herbarium of the Laboratoire de Botanique (Université de Cocody- Abidjan), with the voucher numbers: MC-DADE-Diapodoumé2010-1 and MB-DADEDiapodoumé2010-1 respectively.

Extraction of plant materials

Dried powdered leaves of M. crispata and M. brevipes were each serially cold-extracted with petroleum ether, dichloromethane and methanol. The extracts were each concentrated under reduced pressure using the rotavapor at 40oC into semisolid mass. The semisolid mass was further dried under vacuum to give a hardened amorphous mass, which was kept in the fridge until needed for use.

Isolated compounds

Eleven aporphines alkaloids (Figure 1) identified as, (-)- mocrispatine (1); (-)-pallidine (2); (-) N-méthylarmépavine (3); (+)- magnoflorine (4); (+)-menispermine (5); (-)-anolobine (6); (+)- anolobine (7); (+)-listeferine (8); (+)-réoméroline (9); (+)- laurotetanine (10) and (+)-corydine (11) isolated from the dried powdered leaves of M. crispata and brevipes [11,12] were used in this study.

pharmacognosy-natural-products-alkaloids-isolated

Figure 1: Aporphine alkaloids isolated from M. crispata and M. brevipes.

Determination of antileishmanial activity of test samples

The antileishmanial activity of the isolated compounds was tested in vitro against L. donovani (WHO designation: MHOM/ET/1967/L82), according to a method previously described [13]. This method is based on a dye, tetrazolium-dye, specific for dead parasites, thus allowing the measurement of an EC50 value. Briefly, promastigotes were cultivated in HEPES (25 mm)-buffered RPMI 1640 medium enriched with 10% fetal calf serum and 50 μg/mL gentamicin at 27°C in a dark environment. The screening was performed in flat bottomed 96-well plastic tissue-culture plates maintained at 27°C. Promastigotes forms from a logarithmic phase culture were suspended to yield about 106 cells/mL after haemocytometer counting. Each well was filled with 100 μl of the parasite suspension, and the plates were incubated at 27°C for 1 h before the addition of the samples, dissolved in Dimethyl Sulfoxide (DMSO) at different concentrations up to 100 μg/ml for both extracts and compounds. The viability of promastigotes was assessed by the Tetrazolium-dye (MTT) colorimetric method. The results are expressed as the effective concentrations (IC50) inhibiting parasite growth by 50% after a 3-day incubation period. Pentamidine and was used as reference compound. Experiments were performed in triplicate. A maximum DMSO concentration of 0.1%, which did not show toxicity, was used in the final well volume of 200 ml.

Determination of trypanocidal activity of test samples

Compounds were tested for their activity against bloodstream forms of T. brucei brucei (CMP fast strain) as described elsewhere [14,15]. This method was based on the observation of the motility of cultivated parasites, followed by the inoculation to naive mice of the solution of immobile parasites with the LC100 of the tested compound. No infection confirms the trypanocidal effect for LC100. Briefly, the bloodstream parasites were maintained in vitro without loss of infectivity for 24 h in the dark at 37°C in a 5% CO2 atmosphere. Screening was performed in 96-well tissue-culture plate in a final well volume of 200 ml containing 2 × 105 parasites/ml, in supplemented minimum essential medium (Gibco, BRL). Samples were tested at varied concentrations up to 100 μg/ml for both extracts and compounds (diluted in DMSO) and the minimum lethal concentration (LC100: defined as the minimum concentration at which no motile parasites were observed microscopically) determined. Confirmation of the LC100 was obtained by injecting naive mice intraperitoneally with 150 μl of the treated trypanosome suspension withdrawn from the well after a 24 h incubation period. The animals were aparasitaemic 30 days post-infection. Melarsoprol and pentamidine were used as reference compounds. Experiments were performed in triplicate. A maximum DMSO concentration of 0.1% which did not show toxicity was used in the final well volume.

Results and Discussion

Methanol, dichloromethane and petroleum ether extracts of M. brevipes and M. crispata showed various levels of antiprotozoal activity against L. donovani promastigotes and T. brucei brucei trypomastigotes in Table 1. The extracts were more active against L. donovani than T. brucei brucei; while all were active against L. donovani (EC50<100 μg/mL), only three including the methanol extract of M. brevipes, dichloromethane and petroleum extracts of M. crispata, showed activity against T. brucei brucei (CL100<100 μg/mL). M. crispata extracts were generally the most active; the dichloromethane and methanol extracts were respectively the most active against L. donovani and T. brucei brucei

Extracts Leishmania donovani Trypanosoma brucei brucei
Concentration IC50 (µg/mL) CL100 (µg/mL)
Monodora brevipes methanol extract 64.2 50.0
Monodora brevipes dichloromethane extract 56.5 >100
Monodora brevipes petroleum ether extract 60.7 >100
Monodora crispata methanol extract 33.9 12.5
Monodora crispata dichloromethane extract 10.8 31.3
Monodora crispata petroleum ether extract 16.6 62.5
Pentamidine 2.6 -
Mélarsoprol (Mel W) - 0.2

Table 1: Antiprotozoal activity of extracts of Monodora genus (leaves).

The eleven aporphine alkaloids; two promorphinanes: [(-)- mocrispatine (1), (-)-pallidine (2)], one benzylisoquinoline: [(-)-N-methylarmepavine (3)], four aporphines: [(+)-magnoflorine (4), (+)- ménispermine (5), (+)-laurotetanine (10) and (+)-corydine (11)], and four oxoaporphines [(-)-anolobine (6); (+)-anolobine (7); (+)- listeferine (8); (+)-roemeroline (9)] have shown varied levels of antiprotozoal activity against L. donovani promastigotes and T. brucei brucei trypomastigotes in Table 2.

Compound Leishmania donovani Trypanosoma brucei brucei
Concentration EC50 (µm) LC100 (µm)
(-)-mocrispatine (1) 193.93 199.68
(-)-pallidine (2) 53.82 191.13
(-) N-méthylarmépavine (3) >200 >200
(+)-magnoflorine (4) >200 >200
(+)-ménispérmine (5) >200 >200
(-)-anolobine (6) 19.21 114.95
(+)-anolobine (7) 14.59 >200
(+)-listeferine (8) 26.69 50.02
(+)-réoméroline (9) 52.20 >200
(+)-laurotetanine (10) 23.24 191.13
(+)-corydine (11) 174.78 183.28
Pentamidine 7.7 -
Mélarsoprol (Mel W) - 0.4

Table 2: Antiprotozoal activity of isolated compounds.

The compounds in a manner similar to the extracts were largely more active against L. donovani promastigotes. The oxoaporphines were generally the most active especially against L. donovani (14.59 ≤ IC50 ≥ 52.20 μm). The aporphine, (+)-laurotetanine (10), also showed good activity against L. donovani (IC50=23.24 μm). The oxoaporphine alkaloid, (+)-listeferine (8) was the most active compound against T. brucei brucei with an LC100 value of 50.02 μm. Two such alkaloides, (+)-reomeroline (9) and (+)-anolobine (7) nevertheless did not show activity against T. brucei brucei. Interestingly however, (+)-anolobine (7) was the most active against L. donovani (IC50=14.59 μm) and has IC50 value of about twice that of the standard drug, Pentamidine (IC50=7.7 μm). Its IC50 value also falls within the range given for the putative antileishmania drug, sitamaquine (2.9 ≥ IC50 ≤ 19.0 μm) [8]. 7 is therefore a potential candidate for further studies as an antileishmanial compound. (+)-Listeferine (8), the most active compound against T. brucei brucei, on the other hand, was 125 fold less active than the reference drug, Mélarsoprol. Three compounds exhibited no activity against either parasite.

The generally low antiprotozoal activity of the aporphines does not make them good candidates for either leishmaniasis or trypanosomiasis therapy. However, the activity demonstrated by the oxoaporphines tells of their potential as important class of phytochemicals that could be a subject of activity optimization through structural modification. Indeed, some of the oxoaporphines which differ slightly in chemical structure showed clear differences in activity in this study. For example, (+)-Listeferine (8; Figure 1) which is a demethylated derivative of (+)-reomeroline (9), is about twice more active than the latter against L. donovani; an observation that demethylation at R3 led to increased antiprotozoal activity of the latter.

Members of the Annonaceae family and their isolated compounds have demonstrated antiprotozoal activities including antiplasmodial, leishmanicidal and antitrypanosomal activities [6,7]. Literature data also revealed similar activity of the related aporphines. Oxoaporphines closely related to those evaluated in this study particularly possess promising antiprotozoal activity especially antitrypanosomal activities [5]. It is therefore not surprising that the oxoaporphines are the most active molecules in this study. This is the first report of the antiprotozoan activity of M. crispat, M. brevipes and the isolated compounds, and it portrays the oxoaporphine as potential candidates for further structural modification-activity study.

Conclusion

The organic solvent extracts of M. crispat, M. brevipes and their isolated aporphines showed varied levels of activity against L. donovani promastigotes than T. brucei brucei trypomastigotes. The oxoaporphines were particularly active especially against L. donovani and therefore are potential candidates for further studies for enhancement of their antileishmanaial activity.

Acknowledgement

The authors are grateful to late Prof. Aké Assi, Botanical Department of University of Cocody-Abidjan, for identifying the plant material. Thanks also the Ministry of Research of the République de Côte d’Ivoire for the financial support.

Ethical Approval

All applicable international, national, and institutional guidelines for the care and use of animals were followed.

References

Select your language of interest to view the total content in your interested language
Post your comment

Share This Article

Article Usage

  • Total views: 119
  • [From(publication date):
    August-2017 - Nov 19, 2017]
  • Breakdown by view type
  • HTML page views : 94
  • PDF downloads : 25
 

Post your comment

captcha   Reload  Can't read the image? click here to refresh

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords