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Abstract

The emergence of multiple drug resistant pathogenic bacteria has severely constricted the antimicrobial options
of treating infectious diseases. One of the powerful mechanisms of antibacterial resistance employed by the
antibiotic resistant bacteria is the active extrusion of antimicrobials with the help of membrane transporters known as
efflux pumps. Efflux pumps effectively reduce the intracellular concentrations of antimicrobials by their antiporter
activity in which antimicrobials are extruded outside the bacterial cell using energy derived from ionic gradient across
the cell membrane. While a few efflux pumps are capable of conferring clinical levels of resistance to antibiotics,
while many others only marginally increase the minimum inhibitory concentrations (MIC) of antibiotics. However, the
role of efflux pumps in gradual development of antibiotic resistance by pathogenic bacteria due to mutations and
other molecular mechanisms during the course of antimicrobial therapy is well recognized. The inhibition of active
efflux can result in maintenance of an intracellular concentration of antibiotics necessary to inhibit or kill bacteria.
Plant-derived compounds have historically been recognized as effective antimicrobial agents. Advances in analytical
techniques have enabled purification of natural compounds responsible for efflux pump inhibition and these
compounds and their derivatives can act as lead compounds for designing more effective efflux pump inhibitors.
Efflux pump inhibition is promising as an effective method of confronting bacterial resistance to antimicrobials either
alone or as adjuvants with antibiotics, and thereby restoring the antibacterial efficacy of antibiotics.
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Introduction
For over seven decades after the introduction of the first antibiotic

penicillin for treatment of infectious diseases, antibiotics have
remained as sole weapons against pathogenic bacteria. However, the
power of antibiotics is fast waning due to the rapid development of
resistance by the pathogenic bacteria [1]. Apart from their use in the
treatment of human infections, antibiotic have been used extensively in
food animals, agriculture and aquaculture. A large proportion (>70%)
of globally produced antibiotics are used in animals for purposes of
growth promotion, prophylaxis, improvement of feed efficiency and
the treatment of infections [2]. The antibiotic overuse has gradually led
to the development of resistance among human pathogenic bacteria.
methicillin resistant Staphylococcus aureus (MRSA), vancomycin
resistant Enterococcus faecalis (VRE), extremely drug resistant
Mycobacterium tuberculosis, carbapenem resistant Enterobacteriaceae
(CRE), New Delhi metallo-β-lactamase (NDM)-producing Klebsiella
pneumoniae have all challenged the efficacy of antimicrobial
chemotherapy [3-5]. Considerable research efforts are being focused
on the development of new and effective chemotherapeutic agents.
However, in the context of fast evolving antibiotic resistance
mechanisms, it is critical to preserve the efficacy of available antibiotics
by prudent and judicious use.

Overview of bacterial resistance mechanisms
Bacteria have evolved diverse mechanisms to overcome antibiotic

pressure. Although exposure to antibiotics is a key reason for the
development of antibiotic resistance, bacteria may also be intrinsically
resistant to certain antimicrobials [6]. The common mechanisms of
bacterial resistance to antibiotics include i) Enzymatic degradation of
the antibiotics with the help of enzymes which hydrolyze antibiotics
into ineffective compounds, (ii) Enzymatic modification of cellular
targets of antibiotics such as the ribosomal protein subunits, nucleic
acids, metabolic enzymes and the bacterial cell wall components so
that the antibiotic is unable to effectively bind to its intended target,
(iii) modification of cell membrane leading to reduced permeability of
the antibiotic into the cytoplasm of the bacterial cell, (iv) active
extrusion of the antibiotics by membrane efflux pumps thereby
reducing the cellular concentrations of antibiotics to levels insufficient
to kill or halt the growth of bacteria [6,7]. Bacteria may be single drug
or multidrug resistant (MDR). MDR bacteria possess multiple
mechanisms of antibiotic resistance and such abilities are encoded on
mobile genetic elements such as the transposons and plasmids [8].
Horizontal transmission of the genetic elements such as plasmid and
transposons through molecular mechanisms such as transformation,
conjugation or phage-mediated transduction are responsible for the
acquisition of multiple mechanisms of drug resistance [7,9]. On the
other hand, many bacteria are intrinsically resistant to certain
antibiotics. A classic example of intrinsic resistance is the antimicrobial
resistance conferred by the chromosomally encoded marRAB locus of
Escherichia coli [10]. This genetic element is responsible for the
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intrinsic resistance of Escherichia coli to diverse antibiotics including
penicillins, cephalosporins, fluorquinolones, tetracyclines,
chloramphenicol, nalidixic acid, rifampin etc. [11]. The AcrAB efflux
pump located on the mar locus is responsible for the antibiotic
resistance phenotype of the Gram-negative bacteria harboring
marRAB locus [11,12].

Secondary active transporters
Bacterial mechanism of transporting structurally diverse molecules

across the membrane involves versatile membrane transporters
classified as primary and secondary active transporters. The primary
active transporter proteins use the energy derived from the hydrolysis
of ATP, while the secondary active transporters make use of an ionic
gradient across the membrane to energize the transport of solutes
against a concentration gradient [13]. Secondary active transporters
utilize the energy gradient created by H+ or Na+ across the membrane
and transport diverse molecules such as salts, sugars, vitamins, fatty
acids, amino acids, Kreb’s cycle intermediates and toxic metabolites
[14]. Secondary active transporters are of two types; symporters, which
transport the substrate and the ions in the same direction, and the
antiporters, which transport ions and the substrates in opposite
directions [15,16]. Based on the sequence homology, secondary active
transporter proteins responsible for antimicrobial efflux are classified
into 4 major families namely i) the major facilitator super family
(MFS), ii) the resistance-nodulation-cell division transporter super
family (RND), iii) the small multidrug resistant transporter super
family (SMR), and iv) the multiple antimicrobial extrusion protein
super family (MATE). MFS, RND and SMR groups of efflux pumps are
H+/drug antiporters, while the MATE group of efflux proteins are Na+/
drug antiporters [17,18]. Apart from these secondary active efflux
proteins, bacteria also harbor ATP-binding cassette (ABC) transporters
which require hydrolysis of ATP to drive the extrusion of antimicrobial
agents from the bacterial cell [19].

Efflux pumps and the antibiotic resistance
Efflux pumps are widely distributed in Gram-positive and Gram-

negative bacteria. The genome of Escherichia coli has about 39 putative
efflux pumps, while the corresponding number in the genome of
Staphylococcus aureus is 31 [20,21], although the number of efflux
pumps need not necessarily determine the extent of antibiotic
resistance [22]. The RND family of efflux pumps is specific to Gram-
negative bacteria with AcrAB of Escherichia coli being one of the
earliest and well characterized RND efflux pumps. Similarly, MFS
efflux pumps are prominent in Gram-positive bacteria. NorA of
Staphylococcus aureus is an extensively studied MFS efflux pump [23].
With the realization of the significance of efflux pumps in the
resistance of bacteria to antimicrobial compounds and the availability
of whole genome sequences of bacteria, several new efflux pumps have
been identified and characterized, some of which are clinically very
important [24,25]. Due to inherent problems in the crystallization of
membrane proteins for X-ray crystallography, researchers have largely
relied on in silico prediction of the efflux pump structures to
understand their structure function relationships [26]. In the context
of pathogenic bacteria rapidly gaining antimicrobial resistance,
inhibition of efflux activity of MDR efflux pumps is an attractive
approach towards restoring the efficacy of antibiotics [27]. Natural
compounds such as the plant extracts are preferred owing to their
generally non-toxic nature.

Plant-based compounds as potential efflux pump inhibitors
Before the discovery of antibiotics, treatment of microbial infections

relied extensively on herbal medicine, especially in the Asian
subcontinent. Plants produce potent antimicrobials as self-defense to
overcome bacterial and fungal infections and these substances may
possess bactericidal or bacteriostatic properties. Plant-derived
compounds are promising as efflux pump inhibitors (EPIs) which can
potentially restore the efficacy of antibiotics by blocking the activities
of efflux pumps and thus allowing the antibiotics to reach the
minimum bactericidal concentration inside the bacterial cell [28].
Since numerous plant-based preparations are known to be
antibacterial, analysis of such preparations using modern analytical
tools such as the High Performance Liquid Chromatography (HPLC)
and Tandem Mass Spectrophotometry (MS/MS) will help to identify
the compounds responsible for antimicrobial activities. Several recent
reviews have elaborated on the useful ness of plant-derived
compounds as potent efflux pump inhibitors [29,30]. EPIs can inhibit
efflux pumps by any of the mechanisms depicted in Figure 1. In vitro
studies have shown that EPIs can restore the efficacy of an antibiotic by
rendering a resistant bacteria susceptible to the antibiotic, reduce the
Minimum Inhibitory Concentrations (MICs) of antibiotics and reduce
the chances of resistance development when used in combination with
the antibiotics [30,31].

Figure 1: Postulated mechanisms of efflux pump inhibition by EPIs
include 1) dissipation of ionic gradient across the cell membrane
which is essential for energizing the efflux activity, 2) transcriptional
down regulation of the genes encoding efflux pumps, 3) competitive
or non-competitive inhibition of substrate binding, 4) disruption of
efflux pump energization by interfering with the ATP hydrolysis, 5)
altering outer membrane permeability (only in Gram-negative
bacteria since Gram-positive bacteria lack an outer membrane), 6)
conformational changes in efflux proteins or interference in the
assembly of multicomponent efflux pumps (e.g. RND or ABC types)
[32,33].

One of the earliest EPI discovered from plant sources is the plant
alkaloid reserpine which was shown to be an effective inhibitor of Bmr
efflux pump of Bacillus subtilis [34]. However, due to the toxicity of
reserpine to humans, its application is restricted to in vitro studies
involving efflux pump inhibitions. Belofsky et al. [35] found that a
flavonoid and phenolic compounds extracted from the plant Dalea
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versicolor potentiated the activities of berberine and some antibiotics
possibly due to efflux pump inhibition. Similarly, isoflavones extracted
from Lupinus argenteus was found to potentiate the antibacterial
activities of alpha-linolenic acid found in the same plant, as well as the
plant antimicrobial berberine and the antibiotic fluoroquinolone
(Table 1) [36].

Baicalein derived from the Chinese medicinal plant Scutellaria
baicalensis Georgi is known to significantly enhance the activities of β-
lactam antibiotics, tetracycline and tetracycline against MRSA [37].
Diterpenes such as ferruginol extracted from the cones of
Chamaecyparis lawsoniana exhibited efflux modulatory activities in
methicillin-resistant Staphylococcus aureus and also potentiated
oxacillin activity against MRSA [38]. Ferruginol could result in 40%
reduction in ethidium bromide efflux by a MDR strain of
Staphylococcus aureus harboring NorA efflux pump [38]. Another
study evaluated 13 different phytoalkaloids as efflux inhibitors and
found that alkaloids such as quinine, piperine and harmaline exhibited
significant efflux inhibitory activities against methicillin resistant
Staphylococcus aureus [39]. Similarly, plant alkaloids ellagic and
tannic acids not only potentiated the antibacterial activities of
novobiocin, coumermycin, chlorobiocin, rifampicin and fusidic acid
against Acinetobacter baumannii, but also resulted in the inhibition of
efflux activities [40]. Indirubin, extracted from the leaves of Wrightia
tinctoria exhibited antibacterial activity against MDR Staphylococcus
aureus and S. epidermidis, and also inhibited efflux activity similar to
reserpine. Although not experimentally determined, the ciproflioxacin
potentiation activity of indirubin suggested possible inhibition of
NorA efflux pump [41]. Cucurbitane-type triterpenoids extracted from
aerial parts of Momordica balsamina significantly inhibited efflux of
EtBr by a MRSA strain and Enterococcus faecalis [42]. Coumarins
derived from Mesua ferrea have also been found to be potentiators of
norfloxacin against clinical strains of Staphylococcus aureus as well as
MRSA [43]. These compounds also significantly inhibited efflux
activity in a NorA overexpressing strain of Staphylococcus aureus [43].
In a study by Dwivedi et al. [44] 4-hydroxy-α-tetralone (1) isolated
from Ammannia spp. along with its semi-synthetic derivatives (1a-1e)
was found to reduce the MIC of tetracycline to multidrug resistant
Escherichia coli. Using Rhodamine 6 G accumulation assay, it has been
shown that the ethanolic leaf extracts of two plant species Callistemon
citrinus and Vernonia adoensis from Zimbabwe were inhibitors of
efflux pumps of Staphylococcus aureus [45]. In continuation of this
finding, it was shown that alkaloids from Callistemon citrinus were
more effective in inhibiting the efflux activities in Staphylococcus
aureus and Pseudomonas aeruginosa. The mechanism of efflux

inhibition involved blocking of ATP-dependent transport of solutes
across the membrane [46]. In addition, these extracts increased the
permeability of cell membranes of Staphylococcus aureus and
Pseudomonas aeruginosa which presumably enhanced the movement
of antibiotic across the membrane [45]. Of the several extracts from
the roots of the African medicinal plant Zanthoxylum capense Thunb.
(Rutaceae), the phenylpropanoid (+)-ailanthoidiol (6) and its ester
derivatives exhibited efflux pump inhibitory activities in
Staphylococcus aureus and enhance the ciprofloxacin activity against
the MRSA strain [47]. Aromatic plant-derived monoterpenic phenols
thymol and carvacrol have been reported to be efflux pump inhibitors
in food-borne pathogens such as Salmonella enteritidis. Thymol was
found to be more effective in reducing the MICs of tetracycline and
benzalkonium chloride [48]. Extracts of Anadenanthera colubrina var.
cebil enhanced the antimicrobial activities of aminoglycosides against
MDR Staphylococcus aureus [49]. Essential oils (EOs) from Salvia
fruticosa could reduce the MICs of tetracycline by inhibition of efflux
pumps and decrease the expression of tet(K) gene in tetracycline
resistant clinical isolates of Salmonella enteritidis [50]. A gallotannin
1,2,6-tri-O-galloyl-β-D-glucopyranose extracted from Terminalia
chebula inhibited efflux pump activity-dependent ethidium bromide
extrusion in a multidrug resistant Escherichia coli [51]. A recent
reported the LmrS efflux pump inhibitory activity of the spice cumin
in a dose dependent manner [52]. Conessine, a steroidal alkaloid
compound derived from the plant Holarrhena antidysenterica,
exhibited synergestic activities with cefotaxime, levofloxacin, and
tetracycline resulting in their significantly reduced MICs to
Pseudomonas aeruginosa by inhibiting MexAB-OprM efflux pump
[54].

The real time gene expression suggested significant down regulation
of ABC-type efflux pump gene yojI and the affinity of the compounds 1
and 1e with YojI was confirmed by molecular docking studies [44].
While the inhibition of efflux activity and potentiation of antibiotics
could be ascertained by MIC and ethidium bromide efflux assays, it is
relatively difficult to determine if one or more efflux pumps are
inhibited, and to identify the target efflux pump. The real time PCR
would help to determine if known efflux pumps are under expressed
due to the activities of inhibitory compounds. For example, Aghayan et
al. [54] investigated the effect of two EPIs Berberine and Palmatine on
the  expression patterns of mexA, mexB, mexC, mexD, mexE, mexF
and mexX in Pseudomonas aeruginosa isolated from burn infections.
This study revealed that the effect of these EPIs was more on the
MexAB-OprM operon [53].

Plant source Active compound Target bacterium Target efflux pump Reference

Ammannia spp 4-hydroxy-α-tetralone (1) & semisynthetic
derivatives Escherichia coli YojI [44]

Anadenanthera colubrina ND Staphylococcus aureus ND [49]

Berberis aetnensis Pheophorbide Staphylococcus aureus Multiple efflux pumps [54]

Berberis vulgaris Berberine and Palmatine Pseudomonas aeruginosa MexAB-OprM [55]

Callistemon citrinus and
Vernonia adoensis Ethanolic leaf extracts Staphylococcus aureus ATP-dependent efflux

pump [45]

Capsicum spp. Capsaicin (8-methyl-N-vanillyl-6-nonenamide) Staphylococcus aureus NorA [56]

Chamaecyparis lawsoniana Diterpenes (Ferruginol) Staphylococcus aureus NorA [38]
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Chamaecyparis nootkatensis phenolic diterpene totarol Staphylococcus aureus NorA [57]

Dalea versicolor Flavanoid, phenolic compounds Staphylococcus aureus,
Bacillus cereus NorA [36]

Holarrhena antidysenterica Conessine Pseudomonas aeruginosa MexAB-OprM [53]

Hypericum olympicum Compound 1 Staphylococcus aureus NorA [58]

Lupinus argenteus Isolflavones Staphylococcus aureus NorA [36]

Mesua ferrea Coumarins Staphylococcus aureus NorA [43]

Momordica balsamina Cucurbitane-type triterpenoids Staphylococcus aureus,
Enterococcus faecalis - [42]

Persea lingue  Kaempferol rhamnoside Staphylococcus aureus NorA [59]

Rosmarinus officinalis) Abietane diterpenes Staphylococcus epidermis Msr(A), Tet(K) [60]

Salvia fruticosa Essential oils Staphylococcus aureus TetK [50]

Scutellaria baicalensis Georgi Baicalein Salmonella enteritidis NorA [37]

Terminalia chebula Gallotannin 1,2,6-tri-O-galloyl-β-D-
glucopyranose Escherichia coli ND [51]

Various aromatic plants Thymol and carvacrol Food-borne pathogens ND [48]

Wrightia tinctoria Indirubin 
Staphylococcus aureus,
Staphylococcus.
epidermidis

NorA [41]

Zanthoxylum capense Thunb. Phenylpropanoid (+)-ailanthoidiol (6) Staphylococcus aureus ND [47]

Table 1: Efflux pump inhibitor compounds from plant sources, their target efflux proteins and the bacterial pathogens inhibited.

The gene expression analysis approach is confounded by the fact
that the effect of many efflux inhibitors could be at the protein level or
they may be simply acting by diffusing the ionic gradient required for
driving the ant port activity [61]. In addition, a bacterium may possess
many efflux pumps including several uncharacterized or even
unidentified efflux pumps. Microarray is an alternative approach
which can help to identify unknown efflux pump genes modulated by
the activities of inhibitory compounds. Further, molecular docking is a
powerful tool to understand the interactions of natural compounds
with the efflux pumps and to identify the actual target sites of
inhibitory compounds [62]. In a recent study, 328 secondary plant
metabolites were screened for their inhibitory activity against
cytoplasmic exporter protein MexB of MexAB-OprM efflux pump of
Pseudomonas aeruginosa. In vitro studies showed that p-coumaric
acid was able to potentiate the antibacterial activity of ciprofloxacin in
MexAB-OprM overexpressing strain of Pseudomonas aeruginosa.
Further, in silico studies showed that a p-coumaric acid derivative 4-
(4-((Z)-2-carboxy-2-((Z)-2,3-dihydrobenzo[e][1,4]diazepin-1-yl)-1-
(4-hydroxyphenyl)vinylamino) phenylsulfonamido)-2-hydroxybenzoic
acid was able to dock more efficiently than the parent compound and
could act as a more potent inhibitor of RNA efflux pumps [63].

Conclusions
The potential role of EPIs in overcoming efflux mediated antibiotic

resistance in pathogenic bacteria is increasingly being recognized. EPIs
can restore the activities of antibiotics wherever efflux is the sole
mechanism of antibiotic resistance. Medicinal plants with known
antimicrobial activities can make good candidates to search for

potential EPIs. High throughput screening methods have enabled
testing of large number of compounds, both natural as well as their
semisynthetic or synthetic derivatives. EPIs identified by in vitro
approach can be subjected to structural elucidation followed by in
silico docking analysis to identify the molecular interactions between
the EPIs and their targets. Understanding the molecular interactions
will help in modifying EPIs for better binding with their target efflux
pumps and hence, more efficient inhibition of efflux pumps. Thus, EPIs
are highly promising as potential adjuvants to maintain the efficacy of
antibiotics in the treatment of infectious diseases.
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