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Abstract
Alzheimer's disease (AD) is the most common form of dementia that affects more than 5 million Americans. It is 

the only disease among the 10 causes of death that cannot be slowed or cured, thus raising the need for identification 
of early preclinical markers that could be the focus of preventative efforts. Although evidence is escalating that 
abnormalities in olfactory structure and function precede AD development and early cognitive impairments by one or 
more decades, the importance of olfaction is largely overlooked in AD, and such testing is not routinely performed in 
neurology clinics. Nevertheless, research using the olfactory model, has begun to advance our understanding of the 
preclinical pathophysiology of AD. Notably, an interesting series of studies is beginning to illuminate the relationship 
between Apolipoprotein E (ApoE) ε4 polymorphism and olfactory dysfunction and late-onset Alzheimer’s disease. 
In this article, we reviewed present research on the significance of ApoE and olfaction to AD, summarized current 
studies on the associations and mechanisms of ApoE and olfactory dysfunction, and highlighted important gaps for 
future work to further advance the translational application of the olfactory paradigm to early, preclinical diagnosis 
and treatment of AD.
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Introduction

ApoE4 is a risk factor for AD 

Numerous genetic studies have revealed that inheritance of 
ApoE4 allele increases the risk and rate of progression of late-onset 
Alzheimer disease, LOAD [1-3]. The human APOE gene exists as 
three polymorphic alleles—ε2, ε3 and ε4—which have population 
frequencies of 8.4%, 77.9% and 13.7%, respectively [4]. However, 
the frequency of the ε4 allele is dramatically increased to ~40% in 
patients with AD (4). Additionally, 65-80% of AD patients have at least 
one ApoE4 allele. Inheritance of a single ApoE ε4 variant increases a 
person’s risk of developing AD by a factor of three in men and four in 
women, and having two copies of the ε4 allele increases risk by up to 
15-fold compared to persons without the ε4 variant [4,5]. Furthermore, 
ApoE4 inheritance decreases the age of onset of AD [1,6-8].

Apolipoprotein E (ApoE) mediates lipid transport from one tissue 
or cell type to another [9,10], thus participates in the regulation of lipid 
homeostasis. In peripheral tissues, ApoE is mainly produced by the liver 
and macrophages, and mediates cholesterol metabolism in an isoform-
dependent manner. ApoE4 is associated with hypercholesterolemia, 
which is a risk factor for atherosclerosis, coronary heart disease and 
stroke [9,10]. In the CNS, ApoE is mainly produced by astrocytes, 
but also can be expressed by oligodendrocytes, and ependymal layer 
cells [11,12]. Cholesterol is transported to neurons by ApoE via ApoE 
receptors, which are members of the low-density lipoprotein receptor 
(LDLR) family [13]. Increasing evidence suggests that under diverse 
pathophysiological conditions, CNS neurons also express ApoE, 
although at lower levels than astrocytes [14-17]. The cellular origin of 
ApoE appears to influence its effects on AD pathology [18,19].

Neurofibrillary tangles and amyloid plaques, two neuropathological 
hallmarks of AD, are increased in brain samples from ApoE4 carriers 
as compared to non-ApoE4 carriers [3,7]. Both plaques and tangles 

appear earlier in ApoE4 carriers as compared to non-carriers of ApoE4. 
In addition, AD patients with ApoE4 genotype showed widespread 
degeneration of neurons in areas of the brain related to learning and 
memory, compared to non-ApoE4 patients [20]. Although various 
hypotheses have been proposed to explain the relationship between 
ApoE4 and AD, the mechanism by which ApoE4 leads to AD in humans, 
if at all, is still unclear. A comprehensive study of the pathophysiological 
effect of ApoE4 on AD progression is hampered by ethical limitations 
to sampling of brain tissues in living persons as they progress through 
preclinical to clinical stages of the disease. The early involvement of 
the more accessible olfactory pathways by AD biology, therefore offers 
some hope that the olfactory paradigm can be applied to investigative 
efforts aimed at elucidating preclinical pathophysiology of disease 
progression in people with genetic risk of AD. This review examines the 
scientific premise in support of the validity of the olfactory paradigm for 
investigation of early and progressive AD in ApoE4 carriers. To provide 
a template for interpreting data on ApoE-related changes in olfaction 
in AD, we first provide an overview of basic neurobiology of olfaction 
and a brief description of methods used for assessment of olfaction. 
This is followed by the review of extant data that examined whether the 
olfactory system reliably reflects the effect of apoE variations on AD 
vulnerability.
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Neurobiology of olfaction 

The olfactory system enables us to perceive smell from the 
environment, and flavors from food. Loss of olfaction is linked to 
many neurodegenerative diseases, including Parkinson’s disease (PD), 
fronto-temporal dementia (FTD) and AD [21,22]. The olfactory 
system begins with the olfactory mucosa, a pseudostratified columnar 
epithelium in the posterior region of the nasal cavity, from which odor 
information is projected into the olfactory bulb (OB) at the base of 
the brain (Figure 1). In all mammals, nasal airflow carries odorants 
into contact with olfactory receptors (ORs) located on the cilia of 
olfactory receptor neurons (ORNs) in the nasal olfactory mucosa. 
ORNs express only one OR type [23], and ORNs expressing the same 
OR innervate up to two glomeruli per OB [24]. Odorant binding with 
an OR triggers a G-coupled protein–mediated intracellular signaling 
cascade, ultimately producing an action potential [25,26]. The ORs 
possess unique chemosensory tuning properties [27,28], that provide 
a first step at which the olfactory system can sort the limitless number 
of odorants it may encounter. Action potentials in the ORNs transmit 
odorant information into discrete zones in the OB whose activation is 
dictated by nasal airflow [29-31]. These zones in the OB form a “spatial 
map” of odorant information [32-35] and are modulated by local 
glomerular layer neurons. This type of organization is believed to be 
important for the most basic aspects of olfactory perception, including 
odor perception and discrimination [36-38]. The OB is a six-layer 
structure in which the sequential stages of odor information processing 
take place (Figure 1). The axons of ORNs form the olfactory nerve 
layer of the OB [36-38]. Secondary olfactory neurons, called mitral 
cells (MCs) located in the mitral cell layer of OB, and tufted cells (TCs) 
located in the external plexiform layer, all innervate OB glomeruli. 
Another major cell population in the OB are the granule cells, which 
are axon-less interneurons organized in patchy aggregated rows in the 
most central cell layer of the OB (interneuron). The apical dendrites 

of granule cells form synapsis with MCs and TCs. Granule cells also 
receive centrifugal input from some secondary olfactory structures and 
display broader odor-tuning characteristics than the upstream MCs 
and TCs [39]. Granule cells are mostly GABAergic and glutamatergic. 
In many mammalian species granule cells are constantly renewed by 
neurogenesis during adulthood [40-43]. The activity of MCs, TCs, 
and interneurons in the OB is subject to neuromodulation [44]. The 
OB receives dense noradrenergic projections from the locus ceruleus, 
cholinergic input from the horizontal limb of diagonal band of Broca, 
and serotoninergic afferents from the medial and dorsal raphe nuclei. 
Axons from MC and TC converge to form the lateral olfactory tract, 
whose distal projections innervate a variety of secondary olfactory 
structures, including the anterior olfactory nucleus (AON), piriform 
cortex, olfactory tubercle, the lateral entorhinal cortex, and para-
amygdaloid complex (Figure 2). These secondary olfactory structures 
are regarded as the primary olfactory cortex. Cells in the AON cells 
are highly responsive to odor stimulation [45] and they are believed 
to aid in intra-nostril odor localization [46]. The piriform cortex is 
well-known for its role in modifying the processing of odors based 
upon experience and learning [47-51]. Olfactory tubercle neurons 
are reliably activated by tasks that assess odor valence, motivated 
behaviors, and acquisition of rewards, suggesting important roles 
of the olfactory tubercle in guiding hedonic and valence-dependent 
responses to odors [52,53]. Neurons within these secondary olfactory 
structures project into tertiary olfactory structures, which include the 
orbitofrontal cortex, the insular cortex, and the dorsal hippocampus 
[54]. Of particular relevance to AD, the entorhinal cortex innervates 
the hippocampus via the perforant pathway [55]. Additionally, thalamic 
regions receive olfactory information from several of the secondary 
olfactory structures, including the AON, piriform cortex, and olfactory 
tubercle. Olfactory information is also transmitted to the hypothalamus 
via the amygdaloid complex [56]. These foregoing discussions suggest 
that odor experience is intertwined with motivated behavior, emotion 
and cognition through overlap neural circuitry. 

Psychophysical Tasks of Olfaction 
Generally, psychophysical tasks of olfaction are based upon the 

presentation of odors to a test subject, followed by examination of 
the subject’s responses to questions about some characteristics of the 
odorants presented. Olfactory psychophysical tasks most commonly 

Note: G: Granule cell; M: Mitral cell; T: Tufted cell; PC: Periglomerular cells
Figure 1: Schematic diagram of the olfactory neuroepithelium (OE) and the 
olfactory bulb (OB). The OE consists of cells at different stages of differentiation, 
including the proliferating progenitor cells (yellow color), the postmitotic 
immature olfactory neurons (pink color) and the olfactory sensory, OSN (also 
known as olfactory receptor neurons, ORN). Axons from the OSN pierce 
through the cribriform plate at the base of the skull to enter the OB, where 
they form the olfactory nerve layer. The OB, above the OE shows the laminar 
organization, the major cell types and the basic neuronal circuits. Interneurons 
shown are the granule cells (across different layers) and the periglomerular 
cells in the glomerular layer (GL). Efferent neurons of the olfactory bulb are 
tuffed and mitral cells.    

Figure 2: Simplified diagram of brain regions involved in the processing of 
olfactory information. The lateral olfactory tract project odor information into 
the primary olfactory cortex, which include the anterior olfactory nucleus 
(not shown), piriform cortex, olfactory tubercle, amygdaloid complex, 
and entorhinal cortex. From these primary olfactory cortical regions, odor 
information is projected to the thalamus, orbitofrontal cortex, insula cortex 
and hippocampus.
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measured in studies of olfaction in aging include odor identification, 
odor memory, odor discrimination and odor threshold sensitivity 
tasks [57-59]. Other methods which have been employed for clinical 
assessment of olfaction include surveys of subjective rating of olfactory 
ability and quality of life [60] and assessments of odor familiarity [61] 
and hedonics [62]. 

Odor identification tasks

During odor identification tests, odorants are presented sequentially 
to test subjects at suprathreshold concentrations, and subjects are 
required to identify each odor from a list of descriptors. This forced-
choice procedure is aimed at minimizing subjects' response bias. Odor 
identification tests are considered the most advanced type of test 
depiction of higher-order cortical functions among other psychophysical 
tests [63-65]. However, a major problem of odor identification test is 
that it correlates with the verbal abilities of the subject and has a strong 
cultural precondition, as not all odors are known equally well in various 
cultural groups. The most widely used identification tests include 
the 40-odorant University of Pennsylvania Smell Identification Test 
(UPSIT) [59] and the Sniffin’ Sticks Identification Test [58]. However, 
several other tools are available, such as the 3-item Quick Smell 
Identification Test, Q-SIT [66]; the 12-item Brief Smell Identification 
Test, B-SIT [67]; the Smell Diskettes Olfaction Test [68]; the San 
Diego Odor Identification Test, (SDOIT), which consists of 8 common 
household odorants presented in opaque jars and includes a picture 
board to assist odor identification [20]; the Brief (Cross-Cultural) Smell 
Identification Test [67]; and the Scandinavian Odor Identification 
Test [69]. Additionally, odor identification can be assessed using flow-
dilution olfactometers, such as the T&T Olfactometer [70]. 

Odor discrimination tasks 

In odor discrimination procedures, different odorants are 
presented to subjects at suprathreshold concentrations, and subjects 
have to determine which of the odorants smell different [71]. This task 
examines the ability to distinguish between odors, not to recognize 
or identify them. In clinical applications discrimination tests are used 
in combination with identification and threshold tests. The Sniffin’ 
Sticks Test (SST) discrimination task involves a triple-forced-choice 
procedure. Per triplet, two distracter pens encompass identical smells, 
while the respective third pen (the clue) contains a different odor. The 
number of correctly identified clues represents the discrimination score 
[71].

Odor threshold tasks

The principle behind the threshold tests is that a subject is repeatedly 
exposed to ascending and descending concentrations of the same 
odorant and is required to identify the least detectable concentration 
for the index odor (usually n-butanol or phenyl-ethyl-alcohol) [72]. 
The widespread use of the latter odorant in odor threshold applications 
is based on the premise that it more selectively activates olfactory 
receptors than the trigeminal receptors in the nose [72]. This task is 
normally associated with the peripheral part of the olfactory pathway 
[73], and can be measured by means of the T&T olfactometer [70], the 
Threshold Test of the Sniffin’ Sticks Extended Test [71], and the Smell 
Threshold Test (STT) [74].

Odor memory tasks

Perhaps due to their relative complexity, odor memory tasks were 
introduced more recently, compared to threshold and identification 
tasks. Most clinical applications of odor memory use a recognition task 
carried out in two stages: the acquisition and the recognition stages. 

During the acquisition stage, the subject is asked to smell a small set 
of common household odors at intervals of 30 seconds to control for 
odor adaptation. This is followed by the recognition stage whereby the 
subject would be required to recognize the previously presented odors 
among distractor odors [75]. The total number of correctly recognized, 
percent of odors in the acquisition stage that was correctly identified, 
and recognition errors are outcome variables of odor memory tests 
commonly used in clinical studies [75,76].

Neuroimaging and Physiological Measures of Olfaction
Neuroimaging procedures, including structural and functional 

magnetic resonance imaging, positron emission tests (PET), 
single-photon emission computed tomography (SPECT), and 
electroencephalography (EEG), have been used in neuroscience 
research to characterize the neurobiology of olfactory processing. 
The imaging modalities provide good spatial localizations of regions 
relevant to olfaction, while the EEG applications reveal the sequence 
of neuronal activations with high temporal resolution [77]. However, 
due to its relative simplicity, neurobiological investigations of the 
relationship between ApoE and olfaction have almost exclusively 
employed EEG methods.

To characterize EEG patterns of olfactory perception, researchers 
either place electrodes intranasally to acquire odor-induced 
electrophysiological activity locally in the olfactory epithelium (i.e., 
electro-olfactography, EOG), or acquire cortical activations during 
odor exposure, through placement of electrodes on the scalp (i.e., 
odor event-related potentials, OERPs). These methods provide more 
objective measures of olfactory function, independent of patients’ 
response bias. Compared to EOG, OERPs are more commonly assessed 
in clinical populations, and their absence is often a strong indicator 
of olfactory loss [78]. Odor event-related potentials (OERPs) result 
from the sequential activation of different brain areas, beginning from 
olfactory bulbs and tracts and involving the orbitofrontal and insular 
cortices, along with rostrum-medial regions of the temporal lobe 
[79]. In most OERP designs, three scalp electrodes placed along the 
midline – frontal (Fz), central (Cz), and parietal (Pz) – regions allow 
for examination of relative activations of the cortical fronto-centro-
parietal regions by olfactory stimuli [80]. Odor event-related potentials 
consist of a series of positive and negative voltage deflections, which 
are related to a set of underlying components. Most components are 
referred to by a letter (N/P) indicating polarity (negative/positive), 
followed by a number indicating either the latency in milliseconds 
or the component's ordinal position in the waveform. For instance, a 
negative-going peak that often occurs about 100 milliseconds after a 
stimulus is presented is often called the N100 or N1. Typically, N1 is 
followed by a positive peak, known as the P200 or P2. The specified 
latencies for OERP components are often quite variable. For example, 
the P300 (P3) component may exhibit a peak anywhere between 250 
ms – 700 ms [81]. These OERP parameters are important variables in 
studies investigating the influence of ApoE polymorphisms in olfactory 
functions and in AD. 

ApoE4 association with olfactory dysfunction in AD

An overview of results from studies investigating the association 
between apoE polymorphisms and olfactory functions is depicted in 
Table 1. As shown, deficits in odor fluency, odor identification, odor 
recognition memory, and odor threshold sensitivity have all been 
associated with inheritance of the ApoE4 genotype in several studies 
[20,82-86]. These impairments in olfactory psychophysics are observed 
early in the course of AD, even before the onset of clinical dementia 
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Study Sample  (n) Age (years) Measure Findings Other notes

Wang et al. [85] E4 + (25)
E4 -  (33)

E4+ =70.70 ± 7.36; E4- =71.67 
± 6.28

Cross-cultural Smell 
Identification Test 

(CC-SIT)

CC-SIT=9.11 ± 1.37 in E4- and CC-
SIT=7.34  ± 1.43 in E4+; p<0.01

↓ smell identification in ApoE4 
group

Kowalewski and 
Murphy [98]

E4+ (10)
E4-  (10) 69.3 (4.2) 

Olfactory-
visual semantic 
congruency task 

to investigate 
cross-modal odor 

identification 
disturbances 

Significant differences in OERPs 
between E4+, and E4-. 

Significant main effect for congruency 
(F (1,16)=27.08, p <0.001). 

Significant 4-way interaction between 
LR, DV, congruency and ApoE4 (F 

(1,16)=9.41, p=o.007). 
E4+ had a larger difference in 

amplitude between congruous and 
incongruous odor-image pairs at right 

ventral electrode sites than E4-, t 
(9)=3.97, p=0.003. 

ApoE E4 carriers had a significantly 
smaller ERP amplitude difference than 
non-carriers (F (1,17)=5.12, p=0.037).

A scalp topography of ApoE4 
carriers was consistent 
with morphological and 

hypometabolic abnormalities 
found in PET, fMRI and MRI 

studies. OERPs reflected 
hemispheric asymmetries in 

E4 carriers that were line with 
a compensatory mechanism. 

OERPs in an odor/visual 
congruency task differentiated 

ApoE4+ and ApoE4−.

Corby et al. [97]

Young and middle-
aged subjects with 
E4 polymorphisms:

E4 + (20) 
E4 - (20)

E4 +: Young=23.9+2.8 Middle 
age=50.6+2.4.

E4 -: 
Young 22.2+3.0 Middle 

age=49.9+3.2.

Chemosensory tests 
with the butanol odor 

threshold;
SDOIT; OERPs.

Significant effects of ApoE status for P3 
latency collapsed across age (F(1,36)= 
21.91, p<0.001, η2=0.38), with ApoE 

E4- participants demonstrating shorter 
latencies than ApoE E4+ participants. 

In the young group olfactory P3 
latency was the most significant 

predictor (χ2=7.69, p b 0.01) resulting 
in overall classification rate of 75% 
(Sensitivity=80%, Specificity=70%). 
In the middle age group olfactory P3 
latency was also the most significant 

predictor (χ2=12.54, p=0.001) resulting 
in overall classification rate of 80% 
(Sensitivity=80%, Specificity=80%).

OERP is sensitive to very 
subtle changes in the brain 
associated with the ApoE 
E4 allele, even at much 

younger ages than previously 
demonstrated. Additionally, 

the OERP is more sensitive to 
these changes than traditional 
tests of olfactory functioning. 

Handley et al. [90]

Sibling group (24): 
E+ (10); E – (14)   

Control group (47) 
E+ (33); E – (14)

Sibling group mean age 
(range): 74.08 (59 – 88).

Control group: 73.17 (61 – 87)

Odor identification 
performance test

Lower odor identification scores for the 
sibling group 4.17 ± 2.20 compared 

to control group 5.60 ± 2.22, F(1, 67) 
10.42, p<0.01.

No difference in odor identification 
accuracy between E4+ 5.17 ± 2.44, and 

E4- groups  5.09 ± 2.44), p=ns. 
The group × ApoE E4 status interaction 
was significant, F(1, 67) 6.10, p<0.05. 
The sibling E4+ group had the poorest 
mean odor identification scores, lower 

than control E4+ (t(22)= −4.12, p<0.01) 
and control E4- (t(44)= −2.33, p<0.05). 

Odor identification deficits 
may reflect early disease 

progression in individuals at 
increased risk for developing 

the disease. 

Calhoun-Haney  and 
Murphy [83]

Year 1 (baseline): 
E4+ (22) 
E- (28); 

Year 4 (follow-up): 
E4+ (22) 
E- (28)

Year 1: 
E4 + =73; 
E4 - =71; 

Year 4: 
E4 + =77; 
E4 - =75.

Butanol odor 
threshold test; 

SDOIT

At baseline there was no significant 
difference between performance on 
odor identification between the two 

allele groups, (F (1, 48)=2.9, p=0 .09), 
although there was the trend toward 

poorer performance in the E4+ group. 
Allele status significantly affected 

performance on the odor identification 
measure at Year 4 follow-up, (F (1, 

48)=20.0, p<0.0005), with performance 
significantly poorer in E4+ than in E4- 

individuals. E4+ individuals significantly 
declined in odor identification 

performance over time (F(1,21)=22.9, 
p<0.0005), but E4- individuals did not 
(F(1,27)=0.41, p=0.52). There was no 

main effect of time (F (1, 48)=0.39, 
p=0.54) or allele status (F (1,48)=1.7, 

p=0.20) on odor threshold. Detection of 
odor at higher dilution steps indicates 
better sensitivity. Neither the E4+ nor 

E4- group showed a significant decline 
in global cognitive performance over 

time. 

Study demonstrates that 
normal non-demented elderly 

adults who carry the E4+ 
allele and are thus at risk 

for AD, showed a significant 
decline over a 4-year time 
period in performance on 
odor identification but not 
on odor threshold, picture 
identification or the DRS.
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Wetter and Murphy 
[94]

E4 + (10)

E4 -(10)

E4 + =75.7 ± 7.7; 

E4 - =75.3 ± 6.4

Amyl acetate odor 
threshold test; 
UPSIT; SDOIT; 

OERPs.

Significant delays for E4+ individuals at 
each OERP component at: 

N1 [F(1,18)=17.8, p=0 .001)],
 P2 [F(1,18)=19.7, p=0.001], 

N2 [F(1,18)=22.4, p=0.001], and 
P3 [F(1,18)=16.1, p=0.001. 

Individuals with poorer ability to 
identify odors also showed increased 

olfactory P3 latencies, suggesting 
that the ability to identify odors is 

specifically associated with the speed 
of cognitive processing of olfactory 

stimuli. Psychophysical (UPSIT, and 
odor threshold) and cognitive (DRS 
and MMSE) measure revealed no 

significant effects of allele status in this 
sample size.

ApoE4+ Individuals 
demonstrated delays in 

the processing of olfactory 
information compared to 

those who are E4-. OERP 
latency appears to be more 

sensitive for detecting 
olfactory deficits than the 
psychophysical measures 

utilized in this study.

Bacon et al. [86] E+ (9); E- (6)
E+ =75.75 ± 5.01;

 E- =80.67 ± 5.39

Butanol odor 
threshold; 

MMSE; DRS

E4+ performed worse on DRS: t (12)= 
-2.18, p=0.05 and odor threshold. 

E4+ participants showed poorer odor 
sensitivity to butanol than E4-. 

No differences between groups on the 
MMSE

First study documenting 
differences in performance 

on a test of olfaction in group 
of adults at risk for AD (E4+), 
more sensitive than MMSE.

Sundermann et al. 
[87]

MCI patients 
(converters and 
nonconverters 

to AD during 1-9 
years follow up): 
Converters (39); 
Nonconverters 

(109); 
Controls (63)

converters=73.2 ± 7.1; 
Nonconverters=64.9 ± 9.9 

Controls=65.7 ± 9.3

UPSIT; 
Apolipoprotein E 

genotype: patients 
classified as E4+ 

or E4-. 

UPSIT scores in:
Converters=25.8 ± 8.4; 

Non-converters=33.2 ± 4.6; 
Controls=34.8 ± 4.2.              

% of E4 carriers: converters=34.3; non-
converters=23.6; controls 22.4 

Clinical sample of cognitively 
impaired, non-demented 

patients exhibiting memory 
complaints shows that ApoE 
and olfactory dysfunction can 
be combined for prediction of 

conversion rate to AD  

Gilbert and Murphy 
[84]

Control group (38): 
E4+ (19); E4- (19) 

Probable AD (38): 
E4+ (24); E4- (14) 

Confirmed AD (38): 
E4+ (23); E4- (15)

Control: 
E4+ =71.3 0± 2.24; E4- =71.44 

± 2.07; Probable AD: 
E4+ =74.15 ± 1.45; E4- =73.70 

± 1.93; Confirmed AD: 
E4+ =72.16 ± 1.31; E4- =75.90 

± 2.40

Odor threshold test; 
Recognition memory 
task developed by 

Murphy.

Significant effect of threshold for 
group F (2, 108)=6.13, p<0.01, but no 
significant effect for E4 status or an 

E4 status x group interaction, p>0.05. 
On the recognition memory task, E4- 
controls committed significantly fewer 
false positive errors than E4+ controls 
or AD patients. E4+ controls did not 

differ from AD patients in false positive 
errors. 

The analysis of false positive 
errors in recognition memory 
for olfactory stimuli may be 
useful in identifying early 

deficits in cognition.

Gilbert and Murphy 
[84]

E4+ (21); 
E4- (21)

E4+ =71.38 ± 1.88; E4-=71.45 
± 2.06

Odor threshold test; 
Recognition Memory 

Task by Murphy.

No significant difference between the 
odor thresholds of the E4+ and E4- 
individuals (F(1, 40)=0:01; p=0.97). 
No differences between the mean 
number of hits committed by E4+ 
and E4- individuals on recognition 

memory tasks involving odors, faces, 
or symbols. 

E4+ individuals committed more false 
positive errors relative to E4- individuals 
for olfactory stimuli, but not for faces or 

symbols (F (1,40)=4,22; p=0:05*). 
No significant differences between 

E4+ and E4- individuals on 
recognition memory tasks involving 
odors F(1,40)=0.01; p=0.44; faces 

F(1,40)=2.20; p=0.15; or symbols F(1, 
40)=1.98; p=0.28

The remote memory for 
olfactory and visual stimuli 
was not impaired in non-

demented E4+ individuals 
compared to E4 positive 

controls. These data suggest 
that the areas of the brain 

involved in retrieval of remote 
memories are not significantly 

affected in non-demented 
individuals genetically at risk 

for AD. 

Kjelvik et al. [89]

AD and Controls 
(% carriers of E4 

alleles):  

Patients n=18; E4+ 
(73.3%)

Controls n=30; E4+ 
(20.8%) 

Patients=74.6 ± 6.3

Controls=67.4 ± 7.6; 

B-SIT; SSIT; SSDT

Patients performed significantly worse 
than healthy controls on the two odor 
identification tests (B-SIT and SSIT), 
but not on the odor discrimination test 

SSDT. 
B-SIT: controls - 9.6 ± 2.0, patients - 6.6 
± 2.6 **p<0.005; SSIT: controls - 12.7 ± 

2.4, patients - 9.4 ± 3.0 **p<0.005; 

The B-SIT score did not differentiate 
patients with aMCI from those with AD 
at baseline (p>0.4), but differentiated 
those patients persisting with aMCI 

from those who had progressed to AD 
6–18 months later (mean 9.9 months, 
t-test; p=0.037). SSIT scores did not 

differentiate patients converting to AD.

Competence in olfactory 
identification was also 

associated with the volume 
of several brain structures, 
particularly hippocampus, 

more than scores on memory 
tasks in aMCI and AD.

Olfactory tests distinguished 
patients with aMCI and early 

AD from healthy control 
individuals, and suggested 
that patients with greater 
olfactory impairment have 
increased brain atrophy.
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Corby et al. [97]

Young and middle-
aged subjects 
genotyped for 

ApoE

Young E+ (10); E+ 
Middle E+ (10)

Young E- (10); 
Middle E- (10)

ApoE+:
Young=22.2 ± 2.0; 
Middle=49.9 ± 3.2; 

ApoE-:
Young=23.9 ± 2.8; 
 Middle=50.6 ± 2.4

Butanol odor 
threshold; 

SDOIT; OERPs 

DRS scores, butanol thresholds, and 
odor ID scores did not differ between 

age groups, or ApoE groups, and there 
were no interaction effects (p>0.05). 

Young participants produced 
significantly larger P3 amplitudes than 

middle age participants (F(1,36) = 7.96, 
p-0.01, η2 = 0.18). No significant effects 

of ApoE status on visual or olfactory 
amplitude (p>0.05), and ApoE status 

did not interact with age (p>0.05).

Significant effects of ApoE status 
for P3 latency collapsed across 
age (F(1,36)=21.91, p=0.001, 

η2=0.38), with ApoE ε4- participants 
demonstrating shorter latencies than 
ApoE E4+ participants; Significant 

olfactory P3 latency in young subjects 
with E4+ participants producing longer 

P3 latencies than E4- participants 
(p=0.05, η2=0.31). For middle age 
participants analysis demonstrated 

longer P3 latencies (p=0.01, η2=0.47) 
for E4+ participants compared to E4- 

participants.

In the young group olfactory 
P3 latency was the most 

significant predictor 
(χ2=7.69, p=0.01) resulting 
in overall classification rate 
of 75% (Sensitivity=80%, 
Specificity=70%). In the 

middle age group olfactory 
P3 latency was also the 
most significant predictor 

(χ2=12.54, p=0.001) resulting 
in overall classification rate 
of 80% (Sensitivity=80%, 
Specificity=80%). Study 

demonstrates that OERP 
seems to be sensitive to 

very subtle changes in the 
brain associated with the 

ApoE4 allele, even at much 
younger ages than previously 
shown. The OERP appears 

to be more sensitive to these 
changes than traditional tests 

of olfactory functioning.

Landis et al. [77]

60-66 age group 
(E4%): n=1121 
(29.98); 72-78 

age group: n=691 
(29.67); 

81-87: n=339 
(22.44); 

90+ age group: 
n=129 (18.52)

60-66 age group: 63.06 ± 2.90; 
72-78 age group=75.14 ± 2.99; 
81-87 age group=83.92 ± 2.38; 

90+ age group=91.95 ± 2.40

Olfactory memory 
comprised of 
episodic odor 
recognition 

memory and odor 
identification, based 
on the Sniffin’ Sticks 

test battery.

Other measures: 
verbal and visual 

episodic and 
semantic memory 

E4+ had an effect on olfactory memory 
(standardized estimate=0.08, p<0.01), 
such that the presence of an E4 allele 
was associated with poorer olfactory 

memory. 
No interaction effects between APOE 
and age were observed with regard to 
olfactory memory and verbal or visual 

episodic memory (p>0.10). 

This study found that 
olfactory memory is more 

sensitive to effects of age and 
APOE genotype compared 
to episodic and semantic 

memory. 

Murphy et al. [20]
Nondemented 
older persons

E4+ (7); E4- (20)

E4+ =74.00 ± 5.34; E4- =79.43 
± 7.74

Butanol odor 
threshold; 

SDOIT

SDOIT scores were significantly lower 
in E4+ versus E4 group (p=0.006).
Odor threshold task did not reach 

significance between groups. 

Study shows the dissociation 
between odor threshold 

and odor identification very 
early in the disease process, 
even before clinical signs of 

dementia.
Longitudinal study 

of episodic memory 
decline 

Decline group 
n=110: E4+ (45) 

and E4- (65).
No decline group 
n=977: E4+ (279) 

and E4- (698)

Decline group=65.6 ± 9.9.

No decline group = 68.9 ± 10.8
SOIT 

Odor identification scores were lower 
in participants with episodic memory 

decline (main effect, F(1,1083)=7.480, 
p=0.006).

Odor identification scores were lower 
in participants with E4 (main effect, 

F(1,1083)=4.467, p=0.035). 

Olfaction was significantly 
impaired in participants with 

both E4 and an ongoing 
episodic memory decline. 

Longitudinal study 
of global cognitive 

decline 
E4+ (143); E4- 

(353)

73.3 ± 7.1 A version of SOIT 

An odor identification deficit, in 
combination with older age and ApoE4 

predicted decline in global cognitive 
function. 

olfactory deficit can 
dissociate between benign 

and non-benign global 
cognitive development in 

nondemented, very old E4-
carriers, who are at high 

risk of
developing dementia. 

However, further longitudinal 
assessment are needed 

to resolve whether a 
combination of olfactory 
deficit, E4, and high age 

predicts clinical dementia over 
a more extended time frame.
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Population based 
longitudinal study

E4+ (372); E4- 
(864)

E4+ =61.5 ± 11.3; E4- =60.7 
± 10.8 A version SOIT 

Odor identification performance 
decreased most strongly in older 

participants with ApoE4; ApoE4 × age 
interaction was significant (p=0.033). 

Although several demographic, 
cognitive, and health variables affected 
odor identification, this results suggest 
that there was a unique effect of the 

ApoE4 × age interaction on odor 
identification. Predictor variables 

accounted for 21.3% of the explanatory 
variance in odor identification 

performance.

The effect of ApoE4 on odor 
identification in the 75–80 
age range is not driven by 
individuals that receive a 

dementia diagnosis within a 
5-year period after olfactory 
assessment. The present 

results suggest that the ApoE 
gene plays a significant 

role for the integrity of the 
olfactory system in non-

demented, elderly individuals.

Young E4+ (11); 
Young E4- (13). 

Old E4+ (14) 
Old E4- (13)

Young E4+ =22.1 ± 1.8;
Young E4- =23.1 ± 2.7.

Old E4+ =70.8 ± 5.0; 
Old E4- =71.6 ± 4.0

Odor threshold, 
olfactory 

ERP stimulus 
presentation, 
recording and 

analysis

Latencies were longer in older adults 
than in young adults, F(1, 49)=106.54, 

p<0.001. 
Young adults who were positive for 

the ApoE E4 allele also showed 
shorter latencies than older adults 

with the ApoE E4 allele, F(1, 
23)=236.05, p<0.001; only the ApoE 
E4 positive older adults maintained 

significant correlations between both 
measurements of adiposity and P3 

latency at Pz, i.e., BMI [r(14)=0.629, 
p<0.05], waist circumference 

[r(14)=0.625, p<0.05] 

Study shows a positive linear 
relationship between adiposity 

and prolonged olfactory 
latencies in older adults. 

When analyzed separately, 
this relationship remained 

significant only in older adults 
who were positive for the 
ApoE4 allele. There were 

no significant differences in 
amplitude between groups. 

E4+ (15); E4- (23) E4+ =58.0 ± 6.3; E4- =58.0 
± 11.1 B-SIT test B-SIT score (M±SD) in E4+ vs. E4- 

=8.9 ± 1.9 and 10.1 ± 1.2, p<0.05

Higher occurrence of olfactory 
dysfunction among Irish 

individuals at genetic risk of 
dementia. 

Sliger et al. [93]

Down Syndrome 
(DS) (34): E4+ 
(12); E4- (22); 

Control n 34

DS=31.2 ± 1.59; 

Control=31.3 ± 1.60
SDOIT

Participants with DS possessing 
at least one E4 allele performed 
significantly poorer on the odor 

identification test compared to those 
without the E4 allele. The mean number 
of odors identified in the E4+ group was 
4.4, compared to 5.7 in the E4- group, 

F (1, 33)=4.51, p=0.04.

Individuals with DS carrying 
the ApoE4 allele, exhibit 

significantly greater deficits 
in odor identification than 

those who are negative for 
the allele. 

Morgan and Murphy 
[99]

Young E4+ (10); 
Middle age E+ (10); 

Old E4+ (10).

Young E4- (10); 
Middle age E4- 

(10); Old E4- (10).

Young E4+ =23.1 ± 2.3; 
Middle age E4+ =50.2 ± 4.5; 

Old E4+ = 70.2 ± 2.9 

Young E4- =22.6 ± 2.0); 
Middle age E4- =50.7 ± 1.7; 

Old E4- =71.2 ± 3.6.

Odor Threshold test; 
SDOIT; OERPs

SDOIT test revealed no significant main 
effects or interaction effects involving 

ApoE status (p>0.05). Odor 

ERP task revealed a main effect 
of ApoE status collapsed across 

age groups (F(1,54)=4.54, p<0.05) 
η2=0.08). 

Varying patterns of brain activation 
were observed over the post-stimulus 
epoch for E4- versus E4+ individuals 

on topographical maps. Individuals with 
the E4 allele demonstrated different 

ERP peak latencies during identification 
of olfactory but not visual stimuli.

 Olfactory ERPs detected 
functional decline in 
individuals at risk for 

Alzheimer’s disease at much 
earlier ages than previously 
observed, suggesting the 

potential role of ERPs for pre-
clinical detection of AD at very 

early stages. 

Sundermann et al. 
[87]

Non-demented 
Older Females: 

E4+ on Hormonal 
Therapy, HT (n=8); 
E4+ No HT (n=11); 
E4- on HT (n=8); 

E4- No HT (n=24); 

AD Female Group: 
E4+ on HT (n=12); 

E4+ No HT (n = 
35); E4- on HT 

(n=6; 
E4- No HT (n=24).

Non-demented Older Females: 
E4+ on HT =70.41 ± 4.22; 
E4+ No HT =69.70 ± 3.60; 
E4- on HT =73.18 ± 4.22; 
E4- No HT =73.77 ± 2.43; 

AD Females: 
E4+ on HT =72.94 ± 2.61; 
E4+ No HT 76.48 ± 1.53; 
E4- on HT =72.97 ± 3.69; 
E4- No HT 75.61 ± 1.89.

Butanol odor 
threshold

HT had no effect on olfactory sensitivity 
in female AD patients regardless of E4 

genotype. Within the non-demented 
no HT group, E4- females had a 

significantly better threshold score than 
E4+ females. No significant differences 

existed in odor threshold scores 
between the E4+ and E4- females in 

the HT comparison group.

HT may exert neuroprotective 
effects on brain areas affected 

by AD. HT is protective 
against loss of odor sensitivity 

function in E4 positive 
individuals in preclinical 

stages of AD.
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Murphy et al. [82]
20 Non-demented 

Old Adults: 
E4+ (10); E4- (10)

E4+ =75.1 ± 8.3; 
E4- =71 ± 6.1

Odor Threshold Test; 
SDOIT; OERP; EEG 

No significant difference in odor 
threshold scores between ApoE4+ and 

E4− participants. 
P3 latency was significantly delayed 

in ApoE E4+ individuals, F(1,18)=9.6, 
p<0.05). The results support significant 

differences between E4+ and E4− 
individuals in P3 latency and in intra-

class correlations of activity. ApoE E4+ 
individuals demonstrated significantly 
longer P3 latency than E4+ individuals 
and differential activity for all response 

types. Differential activity in ApoE 
E4+and E4− individuals, demonstrated 

by the intra-class correlation 
coefficients, is consistent with a 

compensatory hypothesis, which posits 
that E4+ individuals expend greater 
effort in cognitive processing and 

therefore require greater activation of 
neural tissue during retrieval attempts.

Study suggest that cross-
modal ERP studies of 
recognition memory in 

ApoE4+and E4− individuals 
are a useful measure for 
indexing functional brain 

integrity, for understanding 
the neurocognitive changes 
associated with the ApoE4 

allele, and for discriminating 
between brain response in 
E4+ and E4− individuals. 

Oleson and Murphy 
[91]

Older adults with 
Probable AD

Experiment 1 
(n=51): E3/3 
(n=17); E3/4 
(n=17); E4/4 

(n=17). 

Experiment 2 
and 3: (n=69): 

E3/3 (n=23); E3/4 
(n=23); E4/4 

(n=23).

Experiment 1: 
E3/3=74.38 ± 6.91; 

E3/4=74.71 ± 6.84; E4/4=74.88 
± 6.49 

Experiment 2 and 3: 
E3/3=73.78 ± 7.08; 

E3/4=73.17 ± 6.89; E4/4=73.52 
± 6.59

Exp. 1: SDOIT

Exp. 2: Remote Odor 
Memory Task 

Exp. 2, 3: Odor 
Threshold.                                    

Exp.1: The effect of ApoE status across 
groups collapsing over tasks was 

marginal [F(2,46)=2.927, p=0.064]. The 
E4/4 homozygotes showed impaired 

performance in odor identification 
(M=13.79% correct) relative to E3/4 
individuals (M=39.89% correct) and 

E3/3 individuals (M=42.19% correct)- 
p<0.05. 

No significant differences in visual task 
performance. No significant differences 
in performance between E3/4 and E3/3 

individuals for visual memory tasks.
Exp 2: When collapsing across both 

tasks, there was a main effect of ApoE 
status [F(2,64)=6.267, p=0.003]. E4/4 
participants reported lower familiarity 

ratings compared to E3/3 participants, 
but not E3/4 participants. 

Exp. 3: The E4/4 patients showed 
poorer odor detection threshold in the 
left nostril compared to E3/4 patients 

[F(1,44)=5.650, p=0.022].

Percent correct odor 
identification scores for AD 
patients were noticeably 

lower than scores for the E3/4 
group in the current study, 
suggesting that combining 
individuals with different 

levels of E4 allele status in a 
sample of AD individuals may 
show muted effects of AD on 

olfactory function. 

Note: AD Alzheimer’s disease, aMCI amnestic mild cognitive impairment, APOE apolipoprotein E, BOLD blood-oxygen-level dependent, B-SIT brief smell identification 
test, CC-SIT cross-cultural smell identification test, CDR clinical dementia rating, DRS2 dementia rating scale 2, DS Down syndrome, E4 + APOE with presence of at least 
one E4 allele, E4 - APOE without any E4 allele, EEG electroencephalography, fMRI functional magnetic resonance imaging,  HC healthy control, HT hormone therapy, 
MMSE mini-mental status examination, MRI magnetic resonance imaging, OERPs olfactory and visual event-related potentials, POC primary olfactory cortex, PET positron 
emission tomography, SDOIT San Diego odor identification test, SOIT Scandinavian odor identification test, SSDT Sniffin sticks discrimination test, SSIT Sniffin sticks 
identification test, UPSIT University of Pennsylvania smell identification test

Table 1: ApoE olfaction studies.

Author
(year) Animal model Age (months) Measure Findings Conclusion

Nathan et al. 
[101]

ApoE KO mice; 
WT C57BL/6 

strain
4 months BFP test; OC test; OCTA test.

ApoE KO mice performed poorly in all three 
tests compared to WT mice, while they 

learned the tasks at a rate comparable to WT 
mice. Latency to find the buried pellet was 

significantly longer in ApoE KO mice than WT 
mice. ApoE KO mice did not differentiate the 

odorant and failed the avoidance test.

ApoE deficiency in ApoE 
KO mice leads to a deficit in 

olfactory function, suggesting 
an important role for ApoE in 

the olfactory system.

Nathan et al. 
[103]

ApoE KO mice; 
WT C57BL/6 

strain
2-3 months OE Lesion; IHC of OB tissue (0, 3, 7, 

21, 42, and 56 days post-lesion)

Slow OMP recovery in the OB in ApoE 
KO compared to WT mice. Recovery of 

glomerular area was similarly slower. GAP43 
accumulation and restore in the OB were 

slower in KO mice.

Olfactory nerve regeneration is 
significantly slower in KO mice, 
suggesting ApoE participates in 

olfactory nerve regeneration.

MC Asey et 
al. [113]

ApoE KO mice; 
WT C57BL/6 

strain
2-4 months

Ovariectomy.
Estradiol replacement.  IHC of 
Olfactory tissues (5, 14, 28 and 
49 days after OVX and pellet 

replacement).

GFAP concentrations were higher in the 
E2-deprived mice but did not increase in the 

E2-replaced group at 49 days. Syn  and ApoE  
concentrations were significantly ↑ by 15% 
and 25%, respectively, in the E2-replaced 
compared to the vehicle-replaced group at 
5 days, but by 14 days concentrations were 

equivalent.

Estradiol is able to suppress 
reactive gliosis. In addition, 

E2 replacement in OVX mice 
is associated with transiently 

higher levels of ApoE and Syn.
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Nathan et al. 
[102]

 ApoE KO mice; 
WT C57BL/6 

strain
4 months

IHC staining of OB and OE tissues 
fpr ApoE iimunoreactivity 

The perikarya and processes of sustentacular 
(Sus) cells expressed ApoE-like 

immunoreactivity. 
The endothelial cells of blood vessels were 

intensely stained for ApoE in the lamina 
propria. Cells forming Bowman’s gland also 
immunostained for ApoE. The ApoE staining 
in the nerve fascicles was less intense, but 

was uniformly distributed throughout the 
core of the nerve bundles. Ensheathing glia, 
surrounding the nerve fascicles also stained 

heavily for ApoE. 

ApoE is expressed in 
the adult OE and lamina 

propria at strategic locations 
where it could facilitate the 

differentiation, maturation and 
axonal growth of the ORN, 

perhaps by recycling lipids from 
degenerating ORN for use by 

growing axons. 

Cheng et al. 
[112]

ApoE KO mice; 
WT C57BL/6 

strain
2-4 months

Ovariectomy;
Estradiol (E2) replacement; IHC 

staining of olfactory tissues.

Five days of E2 replacement significantly ↑ 
LRP expression in the hippocampus, OB and 

neocortex but not in cerebellum. 
In contrast, E2 treatment ↓ LRP expression 

in OB. 

Hormone therapy (HT) 
modification of both ApoE and 
LRP could have wide-spread 

effects on cellular function 
given LRP's manifold signaling 

functions.

Nwosu et al. 
[105]

ApoE KO mice; 
WT C57BL/6 

strain
2-4 months

OE Lesion; 
IHC and IB staining of OB tissue (0, 
3, 7, 21, 42, and 56 days post-nasal 

irrigation).

Sharp ↓ in concentrations of Syn in OB 
following injury in both WT and KO mice 

during the degenerative phase (3–7 days). 
Syn concentration in KO mice did not 

recover by day 56 whereas Syn density in 
WT was essentially restored to normal. IHC 
of glomerular Syn density revealed a lower 
density in KO mice at all-time points post 

lesion. Lower concentration of whole bulb Syn 
parallels the slower recovery of glomerular 

area in KO mice. 

In the absence of ApoE, 
synaptic recovery in whole 

bulb samples is substantially 
delayed compared to WT mice. 

Nathan et al. 
[106]

ApoE KO mice; 
WT C57BL/6 

strain
2-4 months

OE Lesion; 
Tissue preparation (0, 3, 7, 21, 42, 

and 56 days post-treatment); IB; IHC

ApoE expression in the OE is highly regulated 
during the entire course of OE reconstitution 
post injury, and ApoE deficiency in ApoE KO 

mice leads to delayed recovery of mature 
OMP+ cells in the reconstituting OE. 

ApoE production increases 
in the injured OE to facilitate 

maturation of olfactory sensory 
neurons. 

Nathan et al. 
[106]

 ApoE KO mice; 
WT C57BL/6 

strain
4 months

Ovariectomy; 
BrdU injections, Olfactory turbinates 

tissues; IHC

3 days of estradiol replacement ↑ ApoE 
expression in the olfactory nerve and in the 

glomerular layer. Estradiol treatment also ↑cell 
proliferation, total cell numbers, number of 
mature neurons in the olfactory epithelium, 

and reactive astrocyte numbers in the OB in 
both WT and KO mice. 

Estradiol ↑ glomerular synaptophysin (Syn), 
but the magnitude of increase was potentiated 

by the presence of ApoE. 

ApoE may be required to elicit 
the complete effect of estradiol 

on Syn upregulation.

Nathan et al. 
[110]

ApoE KO mice; 
WT C57BL/6 

strain
2-4 months

Ovariectomy; 
BrdU injections, Olfactory tissues; 

IHC

Estradiol replacement ↑ ApoE staining in 
the olfactory nerve and glomerular layers.  

Estradiol ↑ astrocyte density and OE thickness 
regardless of the genotype. Estradiol 

treatment ↑ the number of mature neurons in 
the OE and glomerular synaptophysin in both 
genotypes, but the magnitude of increase was 

greater in the WT than in the KO mice.

Estrogen and ApoE act 
synergistically to minimize the 

loss of mature sensory neurons 
and synapses following 

ovariectomy.

Hussain et al. 
[104]

ApoE KO mice; 
WT C57BL/6 J 

mice

post-natal pups 
(2 days old)

Olfactory explant epithelial culture; 
Immunocytochemistry; Measurement 
of neuronal numbers, halo size, and 

neurite outgrowth 

The OE cultures derived from ApoE KO mice 
have significantly ↓ neurons with shorter 
neurite outgrowth than cultures from WT 

mice. Treatment with either purified human 
ApoE2 or with human ApoE3, but not 

ApoE4, significantly ↑ neurite outgrowth. The 
differential effects of human ApoE isoforms on 
neurite outgrowth were abolished by blocking 

the LRP with lactoferrin and RAP.

ApoE2 and ApoE3 stimulate 
neurite outgrowth in OE 
cultures by interacting 

with the LRP. ApoE4, the 
isoform associated with AD, 

failed to promote neurite 
outgrowth, suggesting a 

potential mechanism whereby 
apoE4 may lead to olfactory 
dysfunction in AD patients.

Peng et al. 
[100]

knock-in mice 
humanized to 
ApoE4 versus 

ApoE3

6 months;
12 months

Olfactory Perceptual Memory; in vivo 
resting and odor-evoked local field 

potentials (LPF)

Young ApoE4 compared to ApoE3 mice 
exhibited a behavioral olfactory deficit 

coinciding with hyperactive odor-evoked 
response magnitudes within the OB that were 
not observed in older ApoE4 mice; shift with 

aging in ApoE4-driven effects from OB to 
PCX;

Early ApoE4-driven olfactory 
memory impairments and OB 
network abnormalities may be 
a precursor to later network 
dysfunction in the PCX, a 

region that not only is targeted 
early in AD, but may be 

selectively vulnerable to ApoE4 
genotype.

Note: AD Alzheimer’s disease, BFP buried food pellet, BrdU bromodeoxyuridine, GAP 43 growth associated protein 43, GFAP  Glial fibrillary acidic protein, IB immunoblotting,  
IHC immunohistochemistry, LRP low-density lipoprotein (LDL) receptor related protein, OB olfactory bulb, OC odor choice, OCTA odor cued taste avoidance, OE olfactory 
epithelium, OMP olfactory marker protein, ORN olfactory receptor neuron, OVX ovariectomized, PCX piriform cortex, RAP receptor-associated protein, Syn synaptophysin 
(a synaptic marker).

Table 2: ApoE mice studies.
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[20,86]. Non-demented carriers of ApoE4 polymorphism showed 
significant decline in olfactory processing as compared to individuals 
without ApoE4 allele [87,88]. Importantly, patients with increased 
brain atrophy have greater olfactory impairment [89], indicating that 
olfactory function is further diminished as AD progresses. In family 
studies, siblings of AD probands had lower olfactory identification 
scores compared to siblings of control probands [90]. Moreover, 
within families, siblings with ApoE4 allele showed greater deficits 
in odor identification tests than siblings without ApoE4 allele. This 
finding of cosegregation between ApoE4 and olfactory identification 
deficits suggests that odor identification deficits may reflect early 
disease expression in individuals at increased risk for developing 
the disease [90]. Data from longitudinal studies provide additional 
supporting evidence of the association between ApoE4 inheritance 
and poor scores in olfactory tests, but more importantly highlights the 
predictive effect of baseline ApoE4 status on progression of olfactory 
loss over a 4-year period [83]. A recent study suggests that domains of 
high-order olfactory functioning, like odor identification and remote 
memory measured by odor familiarity ratings, may be more impaired 
in AD E4/4 homozygotes compared to E3/4 heterozygotes and E3/3 
homozygotes [91]. These deficits give insight into how the presence of 
two E4 alleles may differentially affect the progression of AD. Down 
Syndrome involves trisomy of chromosome 21, where the gene for 
amyloid precursor protein (APP) is located. Down Syndrome (DS) 
represents premature aging disorder and autopsy studies show that 
by age 40; the brains of almost all individuals with DS have significant 
levels of plaques and tangles, which are definitive neuropathological 
features of AD. These consistent brain changes notwithstanding, 
development of AD is not uniform in DS [92]. Interestingly, individuals 
with Down Syndrome (DS) who are carriers of ApoE4 allele, exhibit 
significantly greater deficits in odor identification than those who are 
negative for the allele [93]. It implies therefore, that olfactory tests and 
ApoE4 genotyping may contribute to improved prediction of AD risks 
in DS populations. 

Olfactory event-related potentials (OERPs) have also demonstrated 
high sensitivity to subtle changes in olfactory functioning, and to AD and 
ApoE status [94-96]. A growing number of clinical studies have shown 
that brain changes associated with ApoE4 allele are captured much 
earlier in age through OERP recordings than through psychophysical 
tests of olfaction, thereby suggesting the potential utility of OERP for 
identification of preclinical stages of AD [82,97-99]. 

Mechanistic studies linking ApoE4 to olfactory function 

Despite consistent evidence of the robust relationship between 
olfactory dysfunction, ApoE4 inheritance and AD, the mechanism 
underlying these relationships are not fully understood. However, 
murine models of ApoE are beginning to illuminate our understanding 
of the role of ApoE in olfactory structure and function. The results of 
mechanistic studies in mice and from in vitro biochemical assays are 
highlighted in Table 2. ApoE deficiency in apoE KO mice leads to 
deficits in several tasks of olfactory function, suggesting an important 
role of ApoE in the mice olfactory system [100,101]. Previous studies 
showed that ApoE is expressed at high levels by a variety of cell types in 
the olfactory epithelium (OE). In particular, high expression of ApoE 
in the basal cells and adjoining lamina propria of the OE suggests that 
ApoE may play a role in the differentiation, maturation and axonal 
growth of ORNs, perhaps by recycling lipids from degenerating 
ORN for use by growing axons [102]. Indeed, studies of ApoE KO 
mice provide support that ApoE plays an important role in olfactory 
nerve regeneration [103]. Another group of investigators examined 

the effects of ApoE isoforms on neuronal differentiation and neurite 
outgrowth in OE explant cultures [104]. They discovered that ApoE2 
and apoE3 stimulate neurite outgrowth in OE cultures by interacting 
with the lipoprotein receptor, LRP. ApoE4, the isoform associated 
with AD, failed to promote neurite outgrowth, signifying a potential 
mechanism whereby ApoE4 may lead to olfactory dysfunction in 
AD patients [104]. Moreover, Nathan et al. [101] investigated the 
involvement of ApoE in propagating regeneration of OE cells by 
inducing OE lesions in ApoE and WT mice [101]. The results revealed 
that ApoE expression in the OE is highly regulated during the entire 
course of OE reconstitution post injury, and that ApoE deficiency in 
ApoE KO mice leads to delayed recovery of mature OMP+ cells in the 
reconstituting OE [105]. Glomerular Synaptophysin (Syn) density, 
measured by immunohistochemistry, was lower in KO mice at all time 
points following the lesion [105]. This lower concentration of whole 
bulb Syn paralleled the slower recovery of glomerular area in KO mice. 
In the absence of ApoE, synaptic recovery in whole bulb samples was 
significantly delayed compared to WT mice [106]. This study highlights 
the important role of ApoE in neuronal differentiation. It is noteworthy 
that ApoE has also been shown to modulate other molecular factors 
that are important for neurogenesis, including WNT2 and granulin 
[107-109]. Some studies have identified a close relationship between 
estrogen and apolipoprotein E (ApoE) in the central nervous system, 
and neuroprotective the role of hormone therapy (HT) in several 
neurological disorders. Estrogen and ApoE function synergistically to 
minimize the loss of mature sensory neurons and synapses in OB, and 
OE following ovariectomy [110-113].

Gaps in current studies and future directions 

Current diagnosis of Alzheimer’s disease (AD) is based on clinical 
examination, neuropsychological testing and brain imaging; however, 
a definite diagnosis can only be made by postmortem examination. 
Although brain imaging and cerebrospinal fluid biomarkers are applied 
in patients with mild or questionable symptoms to increase the level of 
diagnostic certainty, and peripheral bio-fluids are largely investigated, 
no definitive diagnostic tests are available yet. Biomarkers that 
reliably predict development of AD would greatly assist preventative 
and management treatments. This review demonstrates the potential 
relevance of olfactory system for both biomarker and pathophysiology 
studies of AD progression. However, many questions must still be 
answered. It is unclear how to identify and differentiate age-related 
olfactory changes and olfactory dysfunction caused by disease. Smell 
loss is also associated with other neurodegenerative disorders, like 
Parkinson’s disease. Olfactory testing would need to be used with 
other biomarkers, specific to each disease, or olfactory changes in each 
disease have to be better specified. While the role of ApoE in olfactory 
neurogenesis has been reasonably demonstrated in basic studies, it 
remains uncertain how ApoE4 promotes AD amyloid and tau pathology 
in the olfactory system, especially in OB tissue. There are numerous 
studies examining interactions between ApoE4 protein and Amyloid or 
Tau proteins in cortical and hippocampal tissues [114]. ApoE is thought 
to be involved in plaque formation, but how exactly ApoE is involved 
in pathogenesis of AD is not well understood. The hypothesis gaining 
widespread support is that ApoE is involved in deposition or clearance 
of Abeta by direct protein-to-protein interaction. When associated with 
lipid, ApoE4 bound preferentially to an intermediate aggregated form 
of Abeta and had higher avidity than did ApoE2 or ApoE3 [115]. The 
tenability of this hypothesis in olfactory tissues has not been studied. 
Moreover, mechanistic correlations between ApoE and olfaction in 
AD to date are performed in animal models, not in humans. There 
are substantial differences between olfactory systems in rodents and 
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humans. Further research is necessary to clarify these uncertainties. 
Patient-derived olfactory neurons offer an excellent alternative tool 
to study correlations between ApoE4 and olfactory impairment. 
Moreover, these olfactory cells can be collected from people at high 
risk (e.g. ApoE4 carriers), particularly those who display progressive 
impairments in psychophysical and physiological tests of olfaction. 
With future accomplishment of these goals in mind, it is reasonable 
to anticipate that combination of psychophysical, neuroimaging, 
electrophysiological and molecular studies of olfactory tissues may 
hold promise for characterization preclinical stages of the disease in 
people at risk, such as the case of ApoE4 inheritance.

Conclusion 
This review summarizes the research showing that ApoE4 is a 

significant player in olfactory impairment, an early AD symptom. 
Furthermore, we discussed the mechanistic studies that have been 
evaluated in ApoE KO mice. Our review stresses the importance of 
olfactory function as a biomarker of AD, and a potential useful test for 
prediction of AD development in those with genetic (i.e., ApoE4) risk. 
Olfactory tests should be incorporated in the assessment of populations 
at high risk for dementia, like ApoE4 alleles for early recognition of AD 
and successful intervention.
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