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Abstract
In this study, the use of factorial design software is applied to evaluate efficiently factors influencing the adsorption 

capacity of activated carbon in treating textile dyes. Activated carbon is usually used to treat wastewater effluents 
from textile industries in order to remove textile dyes before discharge into the environment. Most treatment facilities, 
particularly large industrial or wastewater treatment facilities use continuous flow reactors or packed columns to treat 
the dye. Due to the limited residence time in these types of reactors, adsorption equilibrium is not necessarily reached, 
and the absorption rate becomes an important factor in this treatment process. Other factors influencing the capacity of 
activated carbon used in this study included pH, ionic strength, the type of the dye and the type of carbon. In this study, 
we use Minitab software to design an experiment to evaluate collectively these factors, each under various levels (33 × 
22 factorial design). The novelty of this study is the utilization of factorial design in the experimental approach. 
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Introduction
Effluents from textile industries may contain high concentration 

of commercial dyes; such waste may impact receiving water-bodies 
aesthetically and by reduction of light penetration which affect biological 
processes. In addition, studies showed that dyes can be toxic to aquatic 
life and the expanded use of azo dyes have shown that some of them and 
their reaction products such as aromatic amine are highly carcinogenic 
[1,2]. Guidelines and legislation for dye effluents are currently enforced 
by many countries across the world [3]. Wastewaters containing dyes 
are difficult to treat, since many of the commercial dyes are resistant to 
aerobic digestions, and stable to light, heat and oxidizing agents. Several 
physico-chemical and biological techniques have been developed to 
remove dyes from textile wastewater. Such techniques include activated 
carbon (AC) in straightforward adsorption processes, others may 
involve adsorption-enhanced processes [4-6]. These techniques rely on 
and many will benefit from AC. The application of adsorption technique 
is still the most versatile method in the removal of dyes from wastewater 
effluents. 

Typical treatment facilities used for wastewater containing dyes 
include batch reactor processes when the volume of the wastewater 
is small. However, in wastewater treatment facilities with large flows, 
the typical treatment processes that are used include preliminary 
treatment (screening), primary treatment (coagulation/flocculation and 
sedimentation), secondary treatment and tertiary treatment processes. 
The secondary stage is typically activated sludge treatment (biological 
oxidation), while the tertiary stage is focused on removal of dye. In the 
later process when continuous flow reactor is used, the contact time of 
the adsorbent with the dye (residence time) is normally limited to 2-5 
hours. Contact time longer than that requires much larger tank which 
can be cost prohibitive. Under such shorter contact times, the time 
needed to achieve adsorption equilibrium may not be fully achieved. 
Thus, adsorption kinetics becomes a factor that need to be addressed 
in AC adsorption of dyes. The rates of AC adsorption of most dyes 
were found to conform to pseudo-second–order kinetics with good 
correlation [7-9].

In addition to time, previous review studies have shown that other 
factors that may influence activated carbon adsorption include pH, 
salinity, type of AC, type of dye and temperature [9]. It has also been 
shown that adsorption capacity of AC increases with the increase of pH 
and that the optimum pH found for adsorption of the Reactive Black 

Dye on AC was alkaline [8]. Other studies showed that AC adsorption 
of Acid Yellow 36 dye decreases with the increase of pH [10]. Such 
variation in the effect of pH emphasizes the fact that adsorption of dyes 
on AC can be dye-specific. Moreover, the wastewater salinity (ionic 
strength) was found to impact the AC capacity. Increase of the ionic 
strength to 1 M was found to cause an increase of the adsorption of 
reactive dyes on AC [8].

The size of the dye molecule will determine whether the dye will be 
adsorbed in the region of macropores, mesopores or micrpores of AC. 
According to IUPAC, pore sizes in AC can be the classified into three 
categories: macropores >50 nm; mesopores 2-50 nm and micropores 
<2 nm. The pore distribution of commercial AC activated carbon was 
studied extensively by many researchers and found to depend on the 
method of AC preparation. In general, the average pore size in AC can 
be between 0.25 to 1.0 nm [11-13]. The survey of chemical literature 
shows that the prevalent research work associated with AC adsorption 
has involved in situ measurements on the discharging sites and the 
studies in which AC adsorption isotherms are evaluated in traditional 
“one factor at a time” method [9,14].

Herein, we attempt to gain better understanding of AC adsorption 
of dyes under five different factors including type of dye, type of carbon, 
pH, salinity and time of contact, each at multiple levels. The novelty of 
this study is the utilization of factorial design of experiment approach. 
This is performed by means of factorial designs, the Analysis of Variance 
(ANOVA) and multiple regression analysis. The factorials are useful in 
assessing the statistical significance of the design factors. This provides 
information about what happens when the factor is changed and about 
the potential interactions between the factors. An interaction occurs 
when the effect of one main factor depends on the levels of another 
factor (or factors). The use of ANOVA ensures that the real effect can be 
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distinguished from those arising from the random error. The procedure 
leads to a set of F-statistics and P-statistics to test the hypotheses that 
each factor, including interactions, is non-significant. 

Materials and Methods
Materials

Adsorbents: The activated carbons used in this study were supplied 
by CalgonCarbon, Pittsburgh, PA, USA. The three types of AC used in 
the study are Filtersorb 600-M, AP4-60 and SGL 8X30.

Adsorbates: The two dyes are pure dyes commonly used for 
commercial applications. The dye structures are presented in Table 1. 

Design of experiment

In this study, a factorial experiment was conducted in order to 
evaluate collectively the impact of multiple factors and levels on 
adsorption of the commercial dye on AC. A 33 × 22 factorial design of 
experiment was applied, which means three factors were evaluated at 
three levels and two additional factors were evaluated at two levels. The 
response variable of interest in this study is the “adsorption capacity” 
of activated carbon, mg dye/g AC, calculated collectively under the 
five factors and their levels. The selection of these factors and levels 
are substantiated by the background discussion presented in section 
1. Table 2 presents the selected factors and their levels. A total of 216 
isotherms were conducted in the randomized order and conditions 
dictated by Minitab16®software [15]. Example of the first 10 randomized 
run orders and criteria for each run is presented in Table 3.

Isotherm studies

Preparation of the dyes’ stock solutions: Six liters stock solution 
of each of the two dyes were prepared in tap water. Enough dye was 

added into each to bring the absorbance level of the dye to around 2.6 
absorbance, measured on Shimadzu UV-Vis 1800 spectrophotometer. 
The prepared values of absorption were selected using preliminary 
runs and found to give measurable levels after the AC is added at the 
longest run used in the study (8 hours). The six liters of each dye were 
split in half and to each, sea salt “Instant Sea” was added to bring the 
level of salinity to 0.01 and 1.0%. After the salinity was adjusted to the 
two levels each solution was then transferred into one-liter bottles. The 
stock solution in each bottle was adjusted to the required pH level (4, 
7, or 10) by the addition of drops of 0.1 M HCl or NaOH which did not 
substantively change the volume. The 12 liters prepared were enough to 
run the 216 isotherms in duplicate runs. 

50 mL of the stock solutions for each of the run specifications 
generated by the design of experiment were removed and added into 
a 125-mL brown bottle which was previously cleaned and dried. 
Each bottle contained exactly 0.50 grams of one of the three specific 
carbons selected by the design of experiment. A magnetic stir bar 
was inserted into each bottle and all bottles were placed on a multi-
magnetic stir plate and allowed to spin at very low speed at room 
temperature. The isotherm bottles with duplicates, a total of 216 
experiments were all prepared similarly. Since there were only three 
stir plates with a maximum capacity of 45 bottles, all the experiments 
were not run simultaneously. At the proper times, 2, 4 and 8 hours 
the bottles were removed off the stirrer for analysis. An aliquot of 
the solution in the bottle was removed and centrifuged to remove 
any potential carbon in suspension before the dye absorption is 
measured. 

Dye concentration measurements: For each dye, a Beer-Lambert 
plot was previously prepared. The 12 stock solutions’ initial absorption 
was also previously measured. At the end of each run, the bottles were 
removed from the stirrer and allowed to settle. For each, an aliquot was 

Dye Structure
Size, A0

Length Width

Procion Red 308 reactive dye 14 16

Procion Blue 406 reactive dye 21 7.5

Table 1: Dyes structures and sizes.

Factor Factor, (level)
Type of activated carbon F600 (1) SGL (2) 4-60(3)

Type of dye B406 (1) R308 (2) -----
Salinity, % 0.01, (1) 1.0, (2) -----

Time, hours 2.0, (1) 4.0, (2) 8.0, (3)
pH 4.0, (1) 7.0, (2) 10, (3)

Table 2: Factors and levels.
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factors from the total sum of squares yields the residual mean square 
(error). Each sum of square is calculated as a comparison between two 
sets of results (averages for the high and low level) for the two-level 
factors, with one degree of freedom (DF). The three-level factor will 
have 2 DF. The F-criterion must be compared with critical values 
from statistical tables.

For the five factors investigated for our response variable (mg 
dye adsorbed/gram activated carbon), the most significant are type 
of carbon, type of dye and the contact time (0.00<p<0.001) and 
(12.0<F<287.9). Less significant than time, carbon and type of dye, but 
still within 90% confidence level is the salinity (p=0.042) and (F=4.21). 
The three carbons tested had a range of pore size between 3-15 A. The 
dye molecules were modeled using Hyperchem software and minimized 
using a PM3 semi-empirical basis set in order to calculate the size [16]. 
As seen in Table 1, both dye molecules are larger than the largest 
pore size of all three activated carbons. Consequently, the dye must 
be adsorbed on the surface of the carbon granules and not within 
the pores. The ions involved can fit within the pores of the activated 
carbon. However, they are larger than hydrogen cations and since 
salinity is a factor affecting dye adsorbance, this may be due to the 
larger size of the ions leading to some surface adsorption which 
would affect binding sites for the dyes. 

The pH was shown to be an insignificant factor in dye absorbance 
(p=0.242) and (F=1.42). In previous studies, pH was identified as a factor 
affecting absorbance. In our results, pH was not a significant factor. We 
speculate that the small hydrogen cations are diffused and adsorbed 
within the pores of the carbon whereas the larger dye molecules are 
strictly adsorbed on the surface so the capacity of dye adsorption is 
unaffected by changes in pH.

We also investigated the significance of the interactions between 
two variables. Of the ten possible interactions between two factors, 
four were shown to have no interaction. Three of these involved 
salinities. Salinity with time, pH, and dye were all insignificant with p 
values ranging between 0.077 to 0.468. The fourth of the two variable 
interactions which was insignificant was carbon and pH. Carbon 
with dye, time and salinity, dye with time and pH, and pH with time 
were all shown to be statistically significant. The R-squared value was 
83.32% which indicates the validity of the significant variables and 
their interactions. In this study, we excluded the possibility of three-
way interactions among the factors. This would have required running 
the study in additional replication runs which would have increased the 
number of runs substantially. 

Figure 1 shows validation indicator plots of the model for our 
experiments. These plots are created by plotting the differences 
between the empirical and the predicted values (residuals) against 

removed, centrifuged and a portion of the solution placed in a cuvette 
and the absorbance measured at the lamda-max specific for that dye. A 
Shimadzu UV-Vis 1800 was used for all measurements. All bottles were 
similarly treated and measured after until all 216 runs were completed. 
The absorbance measurements were converted to concentrations in 
mg/mL using the Beer-Lambert best fit equation for the dye. Because 
each bottle had 50 mL this was easily converted to mg of dye which was 
subtracted from the initial amount of dye to calculate total dye adsorbed 
onto AC in mg. The response factor mg dye adsorbed/gram of AC was 
then calculated for all 216 samples and the data generated used in the 
factorial analysis.

Results and Discussion
Adsorption capacity

The adsorption capacity of the carbon (which we define as mg dye 
adsorbed/gram activated carbon) was calculated as explained in the 
methodology. This adsorption capacity ranged from values of 0.71 to 
21.3 (mg dye adsorbed/g carbon) for one dye and from 1.8 to a 16.2 
(mg dye adsorbed/g carbon) for the other dye within our experimental 
factors and their levels. The adsorption of dyes is clearly a complex 
process and is impacted by many factors. As such, it is difficult to 
describe the impact and the relationships of the factors since they are 
interconnected. Our approach, factorial analysis, allows us to evaluate 
the most influential factors efficiently without regard into how each 
factor individually may affect the adsorption. 

Analysis of results

Factorial experiments are useful in assessing the statistical 
significance of multiple design factors. This provides information 
about what happens when the factor is changed and about the potential 
interactions between the factors. An interaction occurs when the effect 
of one main factor depends on the levels of another factor (or factors). 
The evaluation of the results of our experiments was done by means of 
the Analysis of Variance (ANOVA) and multiple regression analysis. 
The use of ANOVA ensures that the real effect can be distinguished from 
those arising from random error. The ANOVA procedure consists of 
decomposing the total sum of squares into components for each source 
of variability in the experiment. In our experiment there are 5 sources 
of variability: dye, carbon type, pH, salinity and the time; each with 
multiple levels. The interactions can be between any number of factors. 
The procedure leads to a set of F-statistics and P-statistics to test the 
hypotheses that each factor, including interactions, is non-significant.

From the ANOVA analysis presented in Table 4, it can be seen 
that the total sum of square (Seq SS) reflects the variance in the entire 
sample. The subtraction of all the sums of squares of the individual 

Run order Dye pH Salinity, % Activated carbon Time, hours
1 1 10 1 1 2
2 1 4 0.01 2 2
3 2 7 1 2 2
4 1 4 1 3 8
5 2 7 0.01 2 4
6 2 10 1 1 2
7 2 4 0.01 1 4
8 2 4 0.01 2 2
9 2 7 0.01 1 4
10 2 7 0.01 1 4

*The table only presents the first 10 of 216 runs with various combinations of factors and levels performed in this study generated by MiniTab16® [15]

Table 3: Design of experiment order of runs.
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Source DF Seq SS Adj SS Adj MS F P
Carbon 2 2632.4 2632.4 1316.2 287.91 0

Dye 1 55.15 55.15 55.15 12.06 0.001
pH 2 12.95 12.95 6.47 1.42 0.245

Salinity 1 19.26 19.26 19.26 4.21 0.042
Time 2 840.63 840.63 420.32 91.94 0

Carbon*Dye 2 101.14 101.14 50.57 11.06 0
Carbon*pH 4 7.52 7.52 1.88 0.41 0.8

Carbon*Salinity 2 38.95 38.95 19.47 4.26 0.016
Carbon*Time 4 148.6 148.6 37.15 8.13 0

Dye*pH 2 65.33 65.33 32.67 7.15 0.001
Dye*Salinity 1 14.43 14.43 14.43 3.16 0.077
Dye*Time 2 115.15 115.15 57.58 12.59 0
pH*Salinity 2 16.78 16.78 8.39 1.84 0.162
pH* Time 4 80.28 80.28 20.07 4.39 0.002

Salinity* Time 2 6.98 6.98 3.49 0.76 0.468
Error 182 832.01 832.01 4.57 - -
Total 215 4987.56 - - - -

Table 4:  Analysis of variance, using adjusted SS for tests.

Figure 1: Validation indicator plots of the model for the experiments (Residual plots).

the empirical. Residuals of a well fitted model are randomly 
distributed around zero. The histogram and normality probability 
plots show a random distributes of values with no noticeable shape 
or trend across all the 216 runs conducted. The four plots all appear 
satisfactory, so we have no reason to suspect problems with the 
validity of our conclusion.

Conclusion
The applied factorial design of experiments approach used in 

this study offers many advantages over conventional “one variable at 
a time” experiments by allowing researchers the ability to determine 

interactions between factors, more efficient utilization of data and 
statistical optimization of results.

In this study, time, type of carbon, and type of dye were all shown to 
be significant factors in the adsorption capacity of carbon. Additionally, 
two variable interactions with carbon and dye, time and salinity; dye 
with time and pH and pH with time were also identified as significant. 

This statistical method of experimental design has potential in 
wastewater treatment because it can be used to optimize adsorption 
capacity in a non-equilibrium environment by identification or 
application of significant factors within the waste stream. 
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Future work should allow the development of multiple regression 
equations that can be used to predict dye adsorption under a variety 
real-world conditions.
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