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Introduction
Mathematical achievement gap

Using data drawn from the National Assessment of Educational 
Progress (NAEP) much research [1-4] have reported the alarming 
underachievement in mathematics of African American youths, ages 
9, 13 and 17 as compared to their White counterparts. Reform efforts 
([5-8], from the National Council of Teachers’ of Mathematics) in 
mathematics education in the United States have called for an agenda 
of mathematics teaching and learning that emphasizes students’ 
engagement in the processes of critical mathematical thinking and 
problem solving analogous to that of mathematicians [9]. However, 
despite these efforts, African American students continue to exhibit 
underachievement and underrepresentation in mathematics.

What has not been delineated in educational policy or reform 
efforts in mathematics is a clear objective for the mathematical 
achievement of African American students. For example, public policy 
in the United States has not determined specifically how African 
Americans should achieve mathematically compared to their White 
counterparts and by what date or when should this achievement be 
realized. To add to the literature on the mathematical achievement of 
African American students in this regard, this research examined the 
trends of mathematical achievement between African American and 
White American students over the past forty years. The authors’ goal 
was to generate a probability statistic that would predict the future 
achievement of African Americans given historical, mathematical 
achievement gains and declines. Specifically, this study sought to 
estimate the probability that the mathematical achievement gap 
that has historically existed between African Americans and White 
Americans will close within the next 50 years.

Mathematical model

In 1907, Andrei Markov, a Russian mathematician, began the study 
of an important new type of chance process. In this process, the outcome 
of a given experiment can affect the outcome of the next experiment. 

This type of process is called a Markov Process or Markov Chain [10]. 
A Markov-Chain process is a stochastic, mathematical model with 
transition probabilities (defined below) that provide information about 
how to relate one stage of a process to the next [10].

To create a mathematical model for this research, the authors used 
a discrete Markov Chain. As delineated in the work of Kemeny and 
Snell [11], a discrete or finite Markov chain is a stochastic process 
with finitely many states on a nominal scale. Moreover, the stochastic 
process is a random process evolving in time. Since this research sought 
to determine the probability that the mathematical achievement gap 
between African American and White American students will close in 
a finite number of years, a discrete Markov chain was appropriate in 
modeling this phenomenon. Further, mathematical achievement gap 
scores examined during discrete times in history lend themselves better 
to stochastic modeling rather than deterministic modeling in which 
the impending state of the process completely depends on the past 
and the present states of the process. The authors used the following 
properties of a discrete Markov process in developing the framework 
of the stochastic model:

• The number of possible outcomes or states is finite.

• The outcome at any stage depends only on the outcome of the
previous stage.

• The probabilities are constant over time.
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Abstract
A stochastic, mathematical model known as a discrete Markov Chain was used to show how to estimate the 

probability that the mathematical achievement gap between African Americans and White Americans would close 
during a particular calendar year. The implications of race in the achievement of mathematics in the United States are 
profound and well-documented in mathematics education research literature. The authors used historical data drawn 
from the National Assessment of Educational Progress (NAEP) to examine trends of mathematical achievement 
between African Americans and White Americans during the assessment years of 1973–2012. The authors provide 
a discussion of NAEP data in the context of the discrete Markov Chain model and describe how specific properties 
of the Markov process were used to estimate the probability that the mathematical achievement gap will close within 
the next 50 years.
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Mathematically, we describe a discrete Markov chain with the 
following formula:	  

(t 1) (t) (t 1) (t 1) (t)
1,... ij{S j ,S } {S j } m (t)+ − +
−= = = = = = =tM S i i M S i [12]

In the formula, t denotes discrete time. In this paper, we define t 
in terms of years. As denoted in the above formula, we have a set of 
states (t)

1t 2 t nt{s ,s ,...s }=S . The process starts in one of these states 
and moves successively from one state to another. Each move is called 
a step. If the chain is currently in state sti, then it moves to state stj at the 
next step with a probability denoted by mij(t). This probability does not 
depend upon which states the chain was in before the current state.

The probabilities mij(t) are called transition probabilities. The 
matrix (t)=t ijM m  is a one-step transition matrix [12]. Henceforth in 
this paper, M denotes the transition matrix for our discrete Markov 

process, such that 1=∑
n

ij
j

m  and 0≥ijm  for all i and j [13]. Each entry 

∈ijm M  is defined as the probability of transitioning (moving) from 
state i to state j. Further, we denote the states: {s1, s2… sn}. Thus, mij is 
the probability that an object in state sj transitions to state si [14].

Further describing our mathematical model, we let M be the 
transition matrix for our discrete Markov process such that Mk has only 
positive entries for some k. Then there exists a steady-state probability xs 
vector such that Mxs=xs [10]. Moreover, 0lim

→∞
=k

sk
M x x  where x0 is an 

initial-state probability vector [15]. The mathematical representation 
of our steady-state vector can be denoted with the following chain of 
equivalences:

0 0 (M I) 0 (M I)= ⇔ − = ⇔ − = ⇔ − = ⇔ ∈ −s s s s s s s sMx x Mx x Mx Ix x x N

Thus, the steady-state vector xs is in the null space of M–I. Since Mk 
has only positive entries for some k, then [dim (N (M-I))=1]. Hence, 

any vector in N(M - 1) is a scalar multiple of xs. Specifically, if 
1 

 =  
 
 



n

x
x

x

 

is any non-zero vector in N (M–I), then 

1
=sx x

z
 where   or we write 

1=

=

∑
s n

k

xx
x

 [15]. 

Hence, in our discrete Markov process, the steady-state vector xs is 
defined as the limiting vector or eigenvector of the transition matrix M, 
and corresponds to the eigenvalue of 1.

Data
The National Assessment of Educational Progress (NAEP) is the 

largest nationally representative of what students in the United States 
know and can do in mathematics, as well as other subject areas. NAEP 
assessments are conducted periodically during particular calendar 
years and are administered uniformly across the United States. NAEP 
assessments are administered to US students at ages 9, 13, and 17. 
Results from NAEP data show the average achievement score at each 
age level and for various demographic groups based on descriptors 
such as race, socioeconomic status, and gender.

Provided in Figure 1 are NAEP data trends in mathematics 
achievement for African American and White American 9-year olds. 
The data reveal a wide achievement gap during the 1970s and early 
1980s. However, the gap narrows during the 1990s but widens again 
during the late 2000s.

Similarly, as seen in Figures 2 and 3 for youths ages 13 and 17, 
although there is a persistent achievement gap in mathematics between 
African Americans and White Americans, the gap has widen and 
narrowed during particular time periods.

Results
To analyze the NAEP data, the authors developed tables of the 

mathematical achievement gaps between African American and White 
American youths at ages 9, 13, and 17 during the assessment years 
1973–2012. To create our mathematical model, we defined g to be the 
random variable representing the score gaps between African American 
and White American students. As posited in the work of Anderson and 
Goodman [13], our model is created under the assumption that g can 
be grouped into classes that we define as states in our discrete Markov 
chain. Each of these classes or states represents the range of potential 
values for g. Thus, using this assumption we developed ranges of score 
gaps, during particular time periods. Given this analysis, we found it 
necessary to generate three separate probability statistics based on the 
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Figure 1: Trend in NAEP mathematics average scores and score gaps for African American and White American 9-year-old 
students.
SOURCE: U.S. Department of Education, Institute of Education Sciences, National Center for Education Statistics, National 
Assessment of Educational Progress (NAEP), various years, 1973-2012 Long-Term Trend Mathematics Assessments.
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mathematical achievement gap at each age level-9, 13, and 17. Thus, we 
find a transition matrix for each age level-9, 13, and 17-based on our 
analysis of the score gaps for each of these groups. 

As described above, one of the properties of the discrete Markov 
process is that the set of states Sij are finite. Therefore, we first examined 
the mathematical achievement gaps at age 9 and assigned each set of 
gap ranges to a corresponding transition state Sij to create the discrete 
Markov-Chain model (Tables 1 and 2).

As shown in Table 2, although smaller or larger intervals of the 
movement of g could be created, we create four states { }1 2 3 4, , ,s s s s
since gap scores have historically moved within these ranges. We 
now define xij as the number of times g transitions from class i to 
class j [13]. Thus, we count the number of transitions or movements 
of g in Table 1 between the classes or states in Table 2. Based on our 

analysis, we describe the changes between the score gaps as a stochastic 
process. Hence, this stochastic process of counting the movements 
of g result in the relative frequency of times g began in a particular 
state and transitioned to each of the other states. Therefore, we define 

the transition probability 4

1=

=

∑
ij

ij

ij
n

x
m

x
. We further describe mij as 

the conditional probability of transitioning into one state, given the 
immediately preceding state. Hence, the outcome at any stage depends 
only on the outcome of the previous stage.

To complete the development of our discrete Markov-chain model, 
we must establish the dependence of  against the test hypothesis that 
g is statistically independent. According to Billingsley [16], the Chi-
Square test provides a systematic way of addressing the statistical 
analysis of Markov chains. Therefore, we used a Chi-Square test of 
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Figure 2: Trend in NAEP mathematics average scores and score gaps for African American and White American 13-year-old 
students
SOURCE: U.S. Department of Education, Institute of Education Sciences, National Center for Education Statistics, National 
Assessment of Educational Progress (NAEP), various years, 1973-2012 Long-Term Trend Mathematics Assessments.
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Figure 3: Trend in NAEP mathematics average scores and score gaps for African American and White American 17-year-old 
students
SOURCE: U.S. Department of Education, Institute of Education Sciences, National Center for Education Statistics, National 
Assessment of Educational Progress (NAEP), various years, 1973-2012 Long-Term Trend Mathematics Assessments.
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particular number of steps less than fifty. Choosing ten years (or steps) 
and performing the power calculations of M with Mathematica1, we 
have: 

10

0.652174 0.347826 0 0
0.652174 0.347826 0 0
0.652174 0.347826 0 0
0.652174 0.347826 0 0

 
 
 =
 
 
 

M .

We see that after ten years (or steps) the transition matrix reaches 
an equilibrium state or stabilizes, in which all rows of the matrix are 
the same. Thus, this matrix is our steady-state matrix, and we conclude 
that based on our Markov process, the achievement gap will likely close 
within the next 10 years for the 9-year old age level.

Note that since our data analysis ends at year 2012, our ten-year 
prediction includes the years 2013 and 2014. Hence, it is important to 
investigate whether the steady-state matrix can be determined in less 
than ten years (or steps). We find that after nine years (or steps) our 
transition matrix for this age level is as follows:

9

0.652174 0.347826 0 0
0.652174 0.347826 0 0
0.652174 0.347826 0 0
0.652175 0.347825 0 0

 
 
 =
 
 
 

M .

Thus, to six decimal places, the transition matrix does not reach an 
equilibrium state until after ten steps.

Similar to the process described above for 9-year olds, the authors 
created a discrete Markov-Chain model based on NAEP data score 
gaps for 13-year olds (Tables 3 and 4). 

As shown in Table 4, although smaller or larger intervals of the 
movement of g could be created, the authors created four states 
{ }1 2 3 4, , ,s s s s  since gap scores have historically moved within these 
ranges and defined xij as the number of times g transitions from class i 
to class j [13].

To complete the development of the discrete Markov-chain model 
for age 13, as described above for age 9, we established the dependence 
of g against the test hypothesis that g is statistically independent by 
using the Chi-Square test. We found that the result of the Chi-Square 
test was 16.107 (p=0.013) and was significant at the 98.700 percent 
confidence level. Thus, based on these results we proceeded in creating 
our discrete Markov-Chain model for age 13.

the data in Table 1, specifically treating a matrix of transition counts 
as if it were a contingency table [13]. We found that the result of the 
Chi-Square test was 13.063 (p=0.042) and was significant at the 95.800 
percent confidence level. Thus, based on these results we proceeded in 
creating our discrete Markov-Chain model for age 9.

Given that the score gaps described above transition through 
four states { }1 2 3 4, , ,s s s s  for 9-year old African American and 
White American students during the years 1973–2012, we define our 
transition matrix of the Markov process for this age level by determining 
the initial class in which g existed and count g’s movement from this 
class or state to each of the other classes or states. Mathematically, we 
describe this process as:

4

1=

= = = =

∑
ij s s

n

xM m Mx x
x

  . Thus, we have

3 2 0 0
5 5
3 1 0 0
4 4
0 1 0 0
0 0 1 0

 
 
 
 =  
 
 
 
 

M , where the entries in M are the transition 

probabilities in our discrete Markov-Chain model. 

Further, in our discrete Markov chain, the sequence of all 
successive vectors xns is linked by our transition matrix, M. Eventually, 
the successive probabilities stabilize or reach an equilibrium state, and 
converge over time [10]. To generate our probability statistic to predict 
whether the mathematical achievement gap will close within the next 
50 years for students at age 9, we first find our transition matrix after a 

NAEP Assessment Year Score gap (g)
1973 35
1978 32
1982 29
1986 25
1990 27
1992 27
1994 25
1996 25
1999 28
2004 24
2008 26
2012 26

Table 1: Mathematical achievement score gaps (g) between African American 
and White American students at Age 9 during the NAEP Assessment Years 1973- 
2012.

1s 23 26g≤ ≤

2s 26 29g≤ ≤

3s 29 32g≤ ≤

4s 32 35g≤ ≤

Table 2: Transition states and g classes for Age 9 students.

NAEP Assessment Year Score gap (g)
1973 46
1978 42
1982 34
1986 24
1990 27
1992 29
1994 29
1996 29
1999 32
2004 30
2008 28
2012 29

Table 3: Mathematical achievement score gaps (g) between African American and 
White American students at Age 13 during the NAEP Assessment Years 1973- 
2012.

1Mathematica is a computational software program based on symbolic 
mathematics.
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For the 13-year old age level, counting the transitions of the score 
gaps between the four states, { }1 2 3 4, , ,s s s s  defined above, we find the 
transition matrix to be:

4

1=

= = = =

∑
ij s s

n

xM m Mx x
x

. Thus, we have

6 1 0 0
7 7
1 0 0 0
0 1 0 0
0 0 1 0

 
 
 

=  
 
  
 

M , where the entries in M are the transition 

probabilities in our discrete Markov-Chain model. 

Again, to generate our probability statistic to predict whether the 
mathematical achievement gap will close within the next 50 years, 
we first find our transition matrix prior to fifty steps to determine 
if it reaches a steady state. Using Mathematica to perform power 
calculations of M, after ten years (or steps) we find the transition matrix 
to be:

10

0.875 0.125 0 0
0.875 0.125 0 0
0.875 0.125 0 0
0.875 0.125 0 0

 
 
 =
 
 
 

M .

Since the transition matrix reaches equilibrium after ten steps, 
the authors investigated whether the steady-state matrix could be 
determined prior to ten steps. The authors found:

9

0.875 0.125 0 0
0.875 0.125 0 0
0.875 0.125 0 0

0.875001 0.124999 0 0

 
 
 =
 
 
 

M .

Thus, to six decimal places, we find that the transition matrix 
reaches an equilibrium state after ten steps. Therefore, we conclude 
that based on our Markov process, the achievement gap will likely close 
within the next ten years for 13-year olds.

Finally, the authors created a discrete Markov-Chain model based 
on NAEP data score gaps at age 17 (Tables 5 and 6). 

As shown in Table 6, we created four states { }1 2 3 4, , ,s s s s  for age 
17 and defined xij as the number of times g transitions from class i to 
class j.

To complete the development of our discrete Markov-chain model 
for age 17, we again used a Chi-Square test. The result was 12.833 
(p=0.046) and was significant at the 95.400 percent confidence level.  

1s 23 30g≤ ≤

2s 30 37g≤ ≤

3s 37 44g≤ ≤

4s 44 51g≤ ≤

Table 4: Transition states and g classes for Age 13 students.

NAEP Assessment Year Score gap (g)
1973 40
1978 38
1982 32
1986 29
1990 21
1992 26
1994 27
1996 27
1999 31
2004 27
2008 26
2012 26

Table 5: Mathematical achievement score gaps (g) between African American and 
White American students at Age 17 during the NAEP Assessment Years 1973- 
2012.

1s 20 26g≤ ≤

2s 26 32g≤ ≤

3s 32 38g≤ ≤

4s 38 44g≤ ≤

Table 6: Transition states and g classes for Age 17 students.

Thus, based on these results we proceeded in creating our discrete 
Markov-Chain model for age 17.

For the 17-year old age level, counting the transitions of the score 
gaps between the four states, { }1 2 3 4, , ,s s s s  defined below, we find the 
transition matrix to be:

4

1=

= = = =

∑
ij s s

n

xM m Mx x
x

. Thus, we have

2 1 0 0
3 3
1 2 0 0
3 3
0 1 0 0
0 0 1 0

 
 
 
 =  
 
 
 
 

M , where the entries in M are the transition 

probabilities in our discrete Markov-Chain model. 

To generate our probability statistic to predict whether the 
mathematical achievement gap will close within the next 50 years for 
this age level, we first find our transition matrix prior to fifty steps to 
determine if it reaches a steady state. Using Mathematica to perform 
power calculations of M, after ten years (or steps) we found the 
transition matrix to be:

10

0.500008 0.499992 0 0
0.499992 0.500008 0 0
0.499995 0.500025 0 0
0.499924 0.500076 0 0

 
 
 =
 
 
 

M .

Finding that the transition matrix does not stabilize after ten steps, 
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the authors examined whether it would stabilize after fifteen years (or 
steps). The authors found:

15

0.5 0.5 0 0
0.5 0.5 0 0
0.5 0.5 0 0
0.5 0.5 0 0

 
 
 =
 
 
 

M .

Since the transition matrix reaches equilibrium after fifteen steps, 
we investigated whether the steady-state matrix could be determined 
prior to fifteen steps. We found:

14

0.5 0.5 0 0
0.5 0.5 0 0
0.5 0.5 0 0

0.499999 0.500001 0 0

 
 
 =
 
 
 

M .

Thus, to six decimal places, the transition matrix does not reach an 
equilibrium state until after fifteen steps. Therefore, we conclude that 
based on our Markov process, the achievement gap will likely close 
within the next fifteen years for 17-year olds.

Conclusion
Limitation of the Study

In creating the mathematical model for this study, the authors 
chose a random variable g, namely the score gaps in mathematical 
achievement between African American and White American youths, 
ages 9, 13, and 17, and analyzed the transition of this variable through 
a unit of time t in years. This type of analysis creates a limitation of the 
study in that other factors (such as socioeconomic status, enrollment 
patterns in mathematics courses, gender issues, teacher expectations, 
test anxiety, and etc.) that may impact the score gaps in mathematical 
achievement are not considered. Rather than isolating each of these 
potential impact factors and analyzing separately their effect on the 
mathematical achievement gap, our random variable g represented the 
collective outcome of these factors. Moreover, modeling the random 
variable in this regard was necessary to create the discrete Markov-
Chain model. In light of this limitation of the study, the following 
implications are made.

Implications of the study

As can be discerned from the National Assessment of Educational 
Progress (NAEP) data, historically there has existed an achievement 
gap in mathematics between African American students, ages 9, 13, and 
17 and their White counterparts. This achievement gap has influenced 
educational processes in public and private school systems, as well as 
public policies in the United States. Although programs and policies in 
the United States such as Algebra for All, No Child Left Behind, and the 
Common Core Mathematics Standards were implemented to improve 
the mathematical achievement of all American students, the consistent 
achievement gap in mathematics among various demographic groups 
has influenced these implementations. Moreover, professional 
mathematics education organizations such as the National Council 
of Teachers of Mathematics have called for equitable mathematics 
classrooms for all students of mathematics [5-8].

Based on the discrete Markov process, described as a stochastic, 
mathematical model, presented in this article, the authors found 
that the mathematical achievement gap that exists between African 
Americans and White Americans in the United States will likely close 

within the next ten years for 9- and 13-year olds and within the next 
fifteen years for 17-year olds. Given that these predictions are varied 
for different age levels, they may serve useful as educational policy 
makers continue to develop public policy to address the mathematical 
achievement of all American youths, including those minority youths 
who consistently underachieve in mathematics.
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