Application of the 19F-WaterLOGSY Type Experiment for NMR-Based Screening of Fluorinated Compounds

Kazu Furihata¹, Hiroaki Utsumi², Toshiyo Kato³, Chiseko Sakuma¹ and Mitsuru Tashiro*⁴

¹Division of Agriculture and Agricultural Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
²School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Horinouchi, Hachioji, Tokyo 192-0392, Japan
³JEOL RESONANCE Inc., Musashino, Akishima, Tokyo 196-8558, Japan
⁴Department of Chemistry, College of Science and Technology, Meisei University, Hino, Tokyo 191-8506, Japan

Abstract

The WaterLOGSY type experiment with 19F detection was applied to observe the interaction between a fluorinated compound and a macromolecule. The proposed experiment, which was developed based on the 19F(1H) saturation transfer difference experiment, was carried out using the conventional spectrometer equipped with a single high band amplifier and a 1H/1F-double tuned probe. The selective 19F detection is advantageous in screening the fluorinated compounds, considering that 19F is a sensitive nucleus in NMR spectroscopy. The effective approach to discriminate binding of the fluorinated compounds to proteins with 19F detection was demonstrated using the complex of diflunisal and human serum albumin.

Keywords: 19F-NMR; NMR-based screening; Fluorinated compound; WaterLOGSY

Introduction

NMR spectroscopy has been utilized as a useful method for analyzing macromolecular complexes and screening compounds with affinity to target macromolecules. Various NMR-based screening methods have been developed using chemical shift perturbation [1-3], transferred NOE [4,5] and diffusion and relaxation editing methods [6,7]. In the development of NMR techniques for screening compounds, one of the essential requirements is the selective detection of the ligand signals while suppressing signals from target proteins. It has been shown that NOE-pumping [8], reverse NOE-pumping [9], saturation transfer difference (STD) [10] and water-ligand observed via gradient spectroscopy (WaterLOGSY) [11,12] experiments could directly detect bound ligands. These methods were designed to detect ligands with proton detection, and furthermore, the NMR-based methods have been extended to fluorine detection [13,14]. An incorporation of fluorine into drugs provides simultaneous modulation of electronic, lipophilic and steric parameters, indicating that inclusion of fluorine atoms in a drug molecule can alter its chemical properties and biological activities, and also influence the interaction with its target [15]. In analysis of fluorinated compounds, some useful NMR methods, which are applicable to the NMR-based screening, are required to be developed. Although 19F NMR spectroscopy is feasible to analyze the fluorinated compounds [16-19], the pervasive NMR spectrometer consoles consist of a single high and a few low band amplifiers, which are incapable of performing 1H-19F heteronuclear experiments. In the recent study, an efficient technique to achieve 1H-19F heteronuclear experiments using a conventional NMR spectrometer equipped with a 1H/19F 1C-double tuned probe was developed in our study [20]. Here, we propose an effective approach to discriminate binding of the fluorinated compounds to proteins with 19F detection, using the complex of diflunisal (Figure 1a) and human serum albumin (HSA).

Materials and Methods

Instrumentation and chemicals

All of the spectra were recorded at 20°C on a Varian 600 MHz NMR system or JEOL ECZ-400S spectrometer. Diflunisal, enoxacin (Figure 1b) and HSA were purchased from Sigma-Aldrich. Two NMR samples were prepared; (i) a 5 mm tube containing a solution of 4.0 mM diflunisal and 4.0 mM enoxacin, (ii) double NMR tubes, which comprised a 3 mm tube used as an inner tube containing 10 mM enoxacin and a 5 mm tube used as an outer tube containing 5.0 mM diflunisal and 0.1 mM HSA. The enoxacin solution, which was prepared in the absence of HSA, was used as a negative control. Each solution contained 90% 1H$_2$O and 10% 2H$_2$O.

NMR spectroscopy

The experimental parameters of 19F(1H) STD experiment at 1H frequency of 600 MHz were as follows; data points=8192, spectral width of 19F=16026 Hz, number of scans=8192, d1=0.1 s, d2=1.5 ms, on-resonance frequencies of 1H=0.9 or 4.8 ppm, and off-resonance frequency=-20 ppm. In the reference 1F experiment, number of scans was 64. Those of W5-WaterLOGSY experiment were as follows; data

*Corresponding author: Mitsuru Tashiro, Professor, Department of Chemistry, College of Science and Technology, Meisei University, Hino, Tokyo 191-8506, Japan, Tel: +81-42-591-5597; E-mail: tashiro@chem.meisei-u.ac.jp

Received March 25, 2016; Accepted April 07, 2016; Published April 09, 2016

Copyright: © 2016 Furihata K, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
points=16384, spectral width of \(^1H=8012 \text{ Hz} \), number of scans=128, recycle time=1.0 s, mixing time=1.5 s. The Gaussian window function was used with zero-filling by a factor of 2.

Results and Discussion

Pulse sequence optimization

Share of one high band amplifier without circuitry changes enabled acquiring the \(^1H-^{19}F \) heteronuclear spectra, although the pervasive NMR spectrometer, consisting of a single high and a few low band amplifiers, is incapable of performing \(^1H-^{19}F \) experiments. In the present research, the \(^{19}F[^1H] \) STD pulse sequence was modified to be applicable to the WaterLOGSY type experiment for screening of fluorinated ligands bound to protein. In comparison with the former type \(^{19}F[^1H] \) STD pulse sequence (Figure 2a), the present pulse sequence was rather simplified as shown in Figure 2b. The consecutive \(^{19}F \) and \(^1H \) 90° pulses between the gradient pulses \(G_1 \) were omitted, and a single \(^1H \) pulse at the low power was incorporated for the selective excitation of proteins. In the \(^{19}F[^1H] \) STD experiment, two type of spectra were acquired depending on the \(^1H \) resonance of selective excitation. In the first experiment, the \(^1H \) resonance at 0.9 ppm, corresponding to the methyl region of protein, was selectively excited. During the subsequent process, the proton magnetization of the protein was transferred to fluorine of the ligand for detection. This experiment corresponds to the conventional STD experiment with \(^{19}F \) detection, which can also be acquired using a sample solution of 100% \(^2H_2O \). The \(^{19}F[^1H] \) STD spectra acquired using the above pulse sequences are shown in Figure 3. The \(^{19}F \) chemical shifts of diflunisal were -112.5 and -115.0 ppm, and that of enoxacin was -129.4 ppm. Enoxacin in a 3 mm tube, corresponding to the inner tube, was used as a free ligand in the absence of HSA. Although the \(^1H \) resonance of a methyl group of enoxacin (1.4 ppm) was close to that of the selective excitation (0.9 ppm), an intensity of the \(^{19}F \) signal of enoxacin resonating at -129.4 ppm in the \(^{19}F[^1H] \) STD experiment was minute (Figure 3b). This result indicated that the \(^1H \) selective excitation at 0.9 ppm unexcited \(^{19}F \) of enoxacin and the \(^{19}F \) signals of diflunisal bound to HSA were selectively detected. The present optimization of the pulse sequence resulted in the increase of sensitivity by a factor of 1.7.

\(^{19}F \) - WaterLOGSY type experiment

In the second experiment, the \(^1H \) resonance at 4.8 ppm, corresponding to the water resonance, was selectively excited. The \(^1H \) magnetization of water, which was transferred to the protein, was again transferred to the bound ligand via direct or indirect relay processes. The signals of enoxacin were expected to be observed with the opposite phase with respect to those of the bound ligand. This experiment is conceptually identical to the WaterLOGSY. In a sample solution without HSA, all \(^{19}F \) signals of diflunisal and enoxacin were observed with the same phase as the negative signals (Figure 4a). In the experiments using a sample of double NMR tubes, the \(^{19}F \) signals of diflunisal which bound to HSA and that of enoxacin as a negative control were observed as opposite phase (Figure 4b). The present methods are feasible to distinguish the bound molecules from the unbound molecules. In comparison of the conventional \(^{19}F \) spectra in the presence and absence of HSA, (Figure 4c and 4d), the signals of diflunisal, resonating at -112.8 and -115.0 ppm, were clearly broadened in the presence of HSA (Figure 4c), indicating the complex formation.

Figure 2: Pulse sequences of \(^{19}F[^1H] \) STD experiment. (a) The former type pulse sequence and (b) the present \(^{19}F[^1H] \) STD pulse sequence. The thin bars represent 90 degree pulses. All pulses were along \(x \) unless otherwise shown. The experimental parameters were; \(d_1=0.1 \text{ s}, d_2=1.5 \text{ ms}, G_1=7.2 \text{ G/cm}, \) gradient pulse width=2.0 ms, \(^1H \) soft pulse width in (b)=2.5 s. Phase cycling: \(\varphi_1= x, -x, -x, x, y, -y, -y, y; \varphi_r= x, x, -x, -x, y, y, -y, -y. \)
Conclusion

It was demonstrated that the WaterLOGSY type experiment with 19F detection was an effective method to selectively detect the fluorinated compounds bound to macromolecules. The 19F detection was advantageous in setting the NMR experiments, because suppression of the protein signals before acquisition using the detection was advantageous in setting the NMR experiments, because screening method applicable to the fluorinated compounds. For discrimination of binding is expected to be a useful NMR-based filter was unnecessary and sample solutions containing 10% 2H2O can be used for the present experiments. Solvent exchange to 100% 2H2O was shown in Figure 2a and 2b, respectively. The ^{1}H resonance at 0.9 ppm was selectively excited. Double NMR tubes, which comprised a 3 mm tube containing 10 mM enoxacin and a 5 mm tube containing 5.0 mM diffusional and 0.1 mM HSA, were used.

Acknowledgements

This work was supported by two Grant-in-Aids for Scientific Research (No. 20580108 for KF and 15K05550 for MT) from the Ministry of Education, Culture, Sports, Science, and Technology.

References

