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Introduction
Convection-Diffusion equation describes the physical phenomenon 

where particles, energy and other physical quantities are transferred 
inside a system due to diffusion or convection. This equation is of the 
form

0 , 0u u u x l t
t x x

ε γ∂ ∂ ∂
+ = ≤ ≤ ≥

∂ ∂ ∂
			                (1)

Subject to the initial condition

u(x,0)=g(x), 0 ≤ x ≤ 1 and boundary conditions u(0,t)=0, t ≥ 0, 
u(l,t)=0, t ≥ 0 where the parameters γ is the Viscosity Coefficient and 
ε is the phase speed and both are assumed to be positive. g is a given 
function of sufficient smoothness.

In EL-Wakil [1], Yee [2], Adomian decomposition method was 
used to solve Convection-Diffusion (CD) equation, in Ghasemi [3], 
Porshokouhi et al. [4], He’s homotopy perturbation method was 
used and in Fallahzadeh [5], Homotopy analysis method was used 
to solve convection diffusion equations. In this paper, the equation 
was solved by Variational Iterational method [6-11]. To illustrate the 
efficiency, applicability and reliability of the method, some examples 
are presented.

Variational Iteration Method
The basic idea of the He's Variational Iteration Method (VIM) [6-

11], can be explained by considering the following nonlinear partial 
differential equations

Lu+Nu=g(x)    (2)

Where L is the linear operator, N is the nonlinear operator and 
g(x) is the inhomogeneous term. According to the method, we can 
construct a correction functional as follows

The corresponding variational iteration method for solving (2) is 
given as

( ) ( ) ( ) ( ) ( ) ( )n n n nu x u x s Lu s N u s g s ds
 
 = + + −
 
 

∫ , (3)

Where λ is a Lagrange multiplier which can be identified optimally 
by variational iteration method. The subscript n denote the nth 
approximation, nu

−

 is considered as a restricted variation i.e 0nuδ
−

= . The 
successive approximation un+1,  n ≥ 0 of the solution u can be easily 
obtained by determine the Lagrange multiplier and the initial guess 

u0, consequently, the solution is given by lim n
n

u u
→∞

= . λ=-1 for problems 
under consideration.

Numerical Examples
In this section, examples of convection diffusion equation and 

results will be compared with the exact solutions. Three examples are 
solved with the VIM algorithm and the results have been generated by 
Maple 18. 

Example 1: Consider the CD equation in [5].

ut-0.02uxx+0.1ux=0   (4)

With the initial condition u(x,0)=e1.17712434446770x. The exact solution 
of this equation is u(x,t)=e1.17712434446770x-0.09t 

Applying (3) to obtain the following:
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Table 1 shows the errors index of the approximate solution at 
different points (x,t). Also the graph of u(exact) with u(approx.) is 
shown in Figure 1 and 2 when t=0.1 and t=1 respectively. Figures 3 and 
4 show the 3-D graph of u(exact) and u(approx.) respectively.

Example 2: Consider the CD equation [4,5].
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ut+0.22uxx-0.5ux=0 				                 (10)

With initial condition u(x,0)=e0.22xsin(πx). The exact solution is 
u(x,t)=e0.22x-(0.024+0.5π2)tsin(πx) 

Applying (3) to obtain the following:
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The graph of u(exact) with u(approx.) is shown in Figures 5 and 6 
when t=0.1 and t=1 respectively. Figures 7 and 8 show the 3-D graph of 
u(exact) and u(approx.) respectively.

Example 3: Consider the CD equation [4,5].

ut-0.2uxx+0.1ux=0, 0≤x≤1, t ≥ 0			               (16)

With initial condition u(x,0)=e0.25xsin(πx). The exact solution of the 
problem is u(x,t)=e0.25x-(0.0125+0.2π2)t sin(πx) 

Applying (3) to obtain the following:
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Figure 1: u(exact) with u(approx.) when t=0.1.

 

Figure 2: u(exact) with u(approx.) whent=1.

Figure 3: 3-D graph of u(exact).

X 0 1 2 3 4 5 6 7 8 9 10
Error 0 0 10-8 0 0 0 10-6 0 0 0 10-4

Table 1: The errors index of the approximate solution at the points (x,t), x=1,2,3..10, 
t=0.1 for example 1.

 
Figure 4: 3-D graph of u(approx.).
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The graph of u(exact) with u(approx.) is shown in Figures 9 and 10 

Figure 5: u(exact) with u(approx.) when t=0.1.

Figure 6: u(exact) with u(approx.) when t=1.

Figure 7: 3-D graph of u(exact).

Figure 8: 3-D graph of u(approx.).

Figure 10: u(exact) with u(approx) t=1.

Figure 9: u(exact) with u(approx) when t=0.1.
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Figure 11: 3-D graph of u(exact).

Figure 12: 3-D graph of u(approx).

when t=0.1 and t=1 respectively. Figures 11 and 12 show the 3-D graph 
u(exact) and u(approx.) respectively.

Conclusion
In this paper, VIM was used for solving the Convection-Diffusion 

equations. The obtained result in comparison with exact solution 
admits a remarkable efficiency. The computations associated with the 
examples in the paper were performed using Maple 18.

Tables 1-3 and Figures 1-12 justify that the method is reliable 
and can be applied to nonlinear Convection-Diffusion equations of 
different parameters.
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