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Introduction
Self-renewal and differential capacity make stem cells as potential 

tools for regeneration, restoration or replacement therapies in a 
variety of disease conditions [1]. Moreover, due to its plasticity and 
tropism to accumulate in different lesions, stem cells can be used as 
a tool to carry therapeutic gene for repair or regeneration of affected 
tissues. Depending of their sources, stem cells are broadly categorized 
into embryonic stem cells (ESCs) i.e. cells derived from the inner cell 
mass of the blastocyst, and adult stem cells i.e. cells isolated from the 
adult bone marrow, peripheral blood or from specific organs. Induced 
pluripotent stem cells are the third category, where somatic cells are 
induced to convert into pluripotent stem cells under certain condition 
and differentiate into a specific cell types [2,3]. Fourth category is 
known as umbilical cord blood (UCB) or tissue derived stem cells that 
are isolated from placental tissues after the birth of baby. It consists 
of both hematopoietic stem cells (HSCs) as well as mesenchymal 
stem cells (MSCs) in mononuclear fraction of UCB [1,4,5]. Moreover 
placental tissue (such as membrane and Wartan’s jelly) can also be 
utilized to generate multipotent stem cells [6,7]. UCB stem cells are 
considered between ESCs and adult stem cells [8]. Subpopulations of 
UCB stem cells carry gene expression that are similar to that of ESCs 
and bone marrow derived stem cells [9,10]. UCB derived stem cells 
have several advantages over ESCs and stem cells derived from adult 
bone marrow. Such advantages are: the source of UBC is literally 
unlimited; lower risk of transmitting infections; immediate availability; 
greater tolerance of human leukocyte antigen (HLA) disparity and 
lower incidence of inducing severe graft-versus-host disease (GVHD) 
[11-14]. This is because UCB derived stem cells are immature and are 
enriched with regulatory T cells, a kind of immune cell that suppresses 
immune responses [13,15,16].

In the present review article we have discussed the potential use 
of UBC derived stem cells in neuroprotection, use in preclinical and 
clinical setting for therapies of neurological disorders, and emerging 

application of UCB derived endothelial progenitor cells (EPCs) as 
regenerative and imaging agent, as well as gene therapy vehicle for 
several neurological disorders and malignancies (Figure 1).

Umbilical Cord Blood and Tissue-Derived Stem Cells in 
Improving Neuroregenaration

Nervous system has limited regenerative potential in disease 
conditions such as cancer, neurodegeneration, stroke, and several 
neural injuries. Stem cells derived from adult source as well as placental 
tissues have been in a spot light to utilize to generate tissues of the 
nervous system during disease conditions. Initial investigations were 
directed towards the use of tissue specific stem cells collected from 
fetal brain (such as neural stem or progenitor cells collected from 
sub ventricular zone (SVZ) tissues) [17,18]. ESCs derived neural 
progenitor cells have also been used along with neural progenitor cells 
derived from bone marrow or umbilical tissues [19,20]. However, due 
to unwanted effects and limited sources, investigators have looked for 
alternative unlimited sources. Due to its advance in tolerance and less 
GVHD, UCB derived stem cells are being attempted in different animal 
disease models of central nervous system as well as in clinical setting 
[21]. Neural capabilities of UCB have been investigated and the results 
potentiate its role as a promising therapeutic tool for regeneration in 
neurological diseases [22-25]. Purification and in vitro characterization 
of UCB cellular fraction have been performed to understand the neural 
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differentiation potential [26,27], which have been characterized by the 
expression of mature neuronal marker proteins [23,24,28-32]. Studies 
have also investigated the population subset that represent neurogenic 
role of UCB cells. Study by Boltze et al. [33] suggests that UCB derived 
mononuclear cells; especially CD34+ cells provide the most prominent 
neuroprotective effect. In vitro studies showed that CD34+ subset 
preferentially reside in neural tissue. However, these mononuclear 
cells have lesser survival advantages in ischemic brain for longer 
periods without immunosuppression [33]. In addition, UCB stem cells 
regenerate functional neurons that have similarities to that of primary 
neurons, as shown by encouraging results from electrophysiological 
and molecular mechanistic studies [34,35]. Therefore, all of the above 
studies collectively suggest that UCB derived stem cells have great 
potential into clinical therapeutics of neurological diseases; however, 
CD34+ cell therapy from UCB may need immunosuppression. 

On the other hand, investigators have isolated cells from UCB as 
well as from different placental tissues that can act as neural progenitor 
cells and helps in regeneration and restoration of neurons in stroke 
animals [36,37]. We have also used umbilical tissue derived cells, which 
improved vascularization, myelination and neurogenesis in an animal 
model of stroke [36,38]. These cells showed capacity to differentiate 
into neural progenitor cells. 

Preclinical and Clinical Advances in Neurological 
Disorders

UCB stem cells have been investigated for safety and therapeutic 
potential on animal models of neurological diseases in order to use 
it for clinical applications. In humans, many neurodegenerative 
disorders are associated with hypoxia during birth or ageing, which are 
associated with the reduced neurogenesis and decline of proliferation 
of stem/progenitor cells [39-42]. In a first human trial, autologous UCB 
mononuclear cells were used in a case of cerebral palsy caused by hypoxia-
induced brain damage. The results indicate that the administered 
UCB has contributed remarkable functional neuroregeneration [43]. 
Investigators also found that peripheral injection of mononuclear 
fraction of UCB revived the aged progenitor cells in the brain and 
stimulated endogenous stem cells to regenerate new cells [44]. Later, 
it was discovered that transplantation of mononuclear cells from UCB 
were incorporated in the damaged area of the brain into a rat model 
of prenatal brain damage [45]. These studies suggest that therapeutic 
potential of UCB stem cells via incorporation of cells into the injury 
site [45]. UCB stem cells have also been used in animal models of spinal 
cord injuries. The stem cells were injected along with brain derived 

neurotrophic factor (BDNF) into the spinal cord injury site in a rat 
model. After transplantation, the stem cells differentiated into neural 
cells at the injury site and showed positive effect on axonal regeneration 
[46]. In other study, transplanted UCB stem cells into rats subjected 
with cerebral artery occlusion to induce focal ischemia like pathology, 
resulted in improvement in animal functional condition [47]. These 
transplanted cells were detected in the affected cortex, sub-cortex and 
striatum of damaged brain expressing neuronal markers [48]. Above 
reports indicate that UCB stem cells are capable of incorporation into 
the damaged locations and neural differentiation in vivo, which is 
thought to help in the recovery process. Some other studies used mouse 
models and investigated the therapeutic potential of UCB stem cells in 
neurological diseases. 

Disease or Lesion Specific Use of UCB
Neuronal injury and stroke

It is clear that UCB stem cells have a potential therapeutic impact 
on animal models of acute nervous system injuries as well as slowly 
progressive neurodegenerative diseases [22]. Thus, use of UCB stem 
cells in clinical applications for neural disorders is growing and will 
provide better option for cell therapy. In clinical trial, the potential of 
UCB autologous transplantation for newborns with hypoxic ischemic 
encephalopathy was tested, which provided promising tool to improve 
the clinical outcome in high-risk infants [49,50]. Perinatal hypoxic 
ischemic brain injury and stroke in the developing brain remain 
important causes of chronic neurologic morbidity. Promising data 
from preclinical studies suggest that transplantation of UCB stem cells 
may have therapeutic potential for neuroregeneration and improved 
functional behavior [51]. Umbilical cord MSCs (UC-MSCs) treatment 
improved the long-term functional outcomes of rats, increased 
mature oligodendrocyte counts, and decreased the number of reactive 
astrocytes and activated microglia quantities after hypoxia-induced 
periventricular white matter damage in the premature brain [52]. 
In mouse model, human UC-MSCs stimulated the injured brain 
and evoked trophic events, microglia/macrophage phenotypical 
switch, and glial scar inhibitory effects that remodeled the brain 
and lead to significant improvement of neurologic outcome [53]. In 
addition, potential use of UCB cells in neonatal brain injury has been 
exclusively reviewed by Varina et al. [54]. Stem cells are involved in 
the neurovascular repair of stroke [55] and possess a definitive role in 
neuronal rejuvenation following a cerebral injury [56]. For example, 
intravenous administration of human UCB-derived CD133+ EPCs 
reduces infarct volume in rat model of stroke [38]. EPCs transplantation 
significantly reduced apoptotic cell number, increased capillary density, 
stimulated neurogenesis, and reduced reactive astrogliosis at the site 
of injury in a rat model of transient middle cerebral artery occlusion 
(MCAO). These findings raise perspectives for the use of UCB cells 
as a well-characterized cell therapy product for optimal therapeutic 
outcome in stroke [57]. In addition, combination therapy has enhanced 
effect on stroke and recovery. The study by Cui et al, indicated that 
a combination of sub-therapeutic doses of Simvastatin and hUCB 
cells treatment increased Ang1/Tie2 and occludin expression in the 
ischemic brain, amplified endogenous angiogenesis and arteriogenesis, 
and enhanced vascular remodeling, thus contribute to functional 
outcome in stroke [58]. UCB-derived pan-hematopoietic CD45+ 
CD11b+ cells improved the neurobehavioral deficits of traumatic 
brain injury upon i.v administration. The therapeutic effect was in a 
direct correlation to a reduction in the lesion volume [59]. In addition, 
combined therapy of UCB and granulocyte colony stimulating factor 
(G-CSF) displayed synergistic depletion of neuroinflammation, while 
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Figure 1: Therapeutic applications of human umbilical cord blood-derived 
stem cells in neurological disorders.
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enhancing endogenous neurogenesis, reducing hippocampal cell loss, 
long-lasting recovery of motor function in traumatic brain injury [60]. 
Considering the influence of the route of the administration of cells, 
intravenous administration of UCB cells was more effective than intra-
striatal administration in producing functional benefit following stroke 
in rat models [61-63]. Local administration caused massive cell death 
compared to that of IV administration [64]. 

Spinal cord injury

Recently, transplantation of CD34+ human UCB cells during the 
acute phase promoted the functional recovery better than during the 
subacute phase after spinal cord injury (SCI) by raising blood vessel 
density, suggesting the possible clinical application for the treatment 
of spinal injury [65]. Purified MSCs from UBC were also used to treat 
SCI, which regenerated spinal cord, improved sensory perception and 
mobility [66]. 

Glioblastoma

Surprisingly, MSCs isolated from different sources have shown 
opposite effects. UCB derived MSCs inhibited glioblastoma (GBM) 
growth and resulted in apoptosis via tumor necrosis factor-related 
apoptosis-inducing ligand (TRAIL) expression, however, adipose 
tissue derived MSCs promoted GBM growth. Highly vascularized 
tumors were developed when adipose tissue derived MSCs and GBM 
were co-transplanted. UCB derived MSCs mediated delivery of 
secretable trimeric form of TRAIL (stTRAIL) was done via adenoviral 
transduction system, which showed more therapeutic efficacy 
characterized by significantly inhibited tumor growth and prolonged 
the survival of glioma-bearing mice compared with direct injection of 
adenovirus encoding the stTRAIL gene into a tumor mass [67]. Similar 
effect was seen when modified interleukin-12 (IL-12p40N220Q; IL-
12M) was used. Antitumor effects were associated with increased local 
IL-12M levels followed by interferon-γ secretion, T-cell infiltration 
in intracranial gliomas and antiangiogenesis [68]. In addition, 
involvement of PDGF/PDGFR pathway has been implicated in human 
UCB induced apoptosis in GBM cells using both in vitro and in vivo 
studies [69]. These studies clearly demonstrate that UCB derived 
MScs have potential use as effective delivery vehicles for therapeutic 
genes in the treatment of intracranial glioma but the differences must 
be considered when choosing a stem cell source for safety in clinical 
application [70]. 

Amyotrophic Lateral Sclerosis (ALS)

Transplantation of UCB stem cells in mouse model of ALS delayed 
onset of symptoms and improved the health condition of the animals 
[47]. However, cell dosage and transplantation strategies need to be 
optimized in order to achieve the positive therapeutic impact [71]. 
Later it was found that multiple infusions of human UCB cells in a 
mouse model of ALS could benefit disease outcomes by protecting 
motor neurons from inflammatory effectors [72]. In addition, 
intraspinal injection of human UCB derived cells in G93A transgenic 
mouse model of ALS at early stages increased survival, which resulted 
in significant improvements in motor performance and astrogliosis in 
the spinal cord [73]. Recently, gene-cell therapy using UCB cells based on 
genetically modified mononuclear cells expressing vascular endothelial 
growth factor (VEGF) and reporter green fluorescent protein (EGFP) 
efficiently improved the parameters of motor and explorative activity, grip 
strength, and survival of SOD1 G93A transgenic mice having ALS [74].

Multifaceted Therapeutic Applications of Human 
Umbilical Cord Blood-Derived AC133+ Endothelial 
Progenitor Cells

Endothelial progenitor cells (EPCs) have been identified mainly 
in the mononuclear cell fraction of peripheral blood, leukapheresis 
products, and in UCB [75], which represent immense therapeutic 
potential roles such as regenerative agent, imaging probe and cell 
based carrier system for gene therapy. Janic et al. [76,77] have 
reported that cord blood (CB)-derived AC133+ (CD133+) cells has 
the ability to amplify the numbers of autologous EPCs by long term 
in vitro expansion while preserving their angiogenic potential, which 
is critically important for developing EPC based therapies. Previous 
studies including ours have shown the mechanism associated with the 
EPC’s migration to damage area. EPCs have special affinity to migrate 
to damage area due to release stromal-cell derived factor (SDF-1) by 
tumor or ischemic lesions [78-81]. SDF-1 acts as a chemoattractant for 
EPCs migration due to abundant expression of CXCR4 receptors on 
cell membrane [81]. Moreover, EPCs were also shown to be attracted 
towards RANTES, which is an inflammatory cytokines [82]. It was 
found that the CYP4A/F-20-HETE system is expressed in EPCs derived 
from human UCB and can act as both an autocrine and a paracrine 
regulatory factor [83]. In this section, we intended to summarize the 
various novel studies, which were performed to show therapeutic 
potential of cord blood (CB)-derived AC133+ cells. 

Cord blood EPCs as a regenerative agent

We have shown that stem/progenitor cells derived from human 
UCB improve structural and functional recovery in stroke models. 
We examined the effect of human UCB AC133+ EPCs on stroke 
development and resolution in a middle cerebral artery occlusion 
(MCAo) rat model using magnetic resonance imaging (MRI) to track 
in vivo the magnetically labeled EPCs. Accumulation of transplanted 
cells in stroke-affected hemispheres revealed that stroke volume 
decreased at a significantly higher rate and exerted a therapeutic effect 
on the extent of tissue damage, regeneration, and time course of stroke 
resolution [38]. Administration of human umbilical tissue derived cells 
significantly reduced ventricular volume and improved cerebral blood 
flow, which is histologically evidenced by enhanced expression of 
vWF and synaptophysin [36]. These studies indicate that UCB derived 
EPCs or tissue derived cells possess tremendous regenerative potential. 
However, application of UCB derived EPCs could be used extensively 
for other neurodegenerative disease if exploited correctly. 

Cord blood EPCs as a MR imaging probe

A major challenge in the development of cell-based therapies for 
glioma or stroke is to deliver optimal number of cells (therapeutic dose) 
to the site of lesions. In addition, cord blood-derived EPCs has potential 
use as a therapeutic and imaging probe [84]. Authors report that new 
technique with short incubation time using 100 µg/ml of Ferumoxides 
and 3 µg/ml of Protamine sulfate is effective in labeling cells for cellular 
MRI [85]. They showed that labeling with ferumoxides-protamine 
sulfate complexes does not inhibit function or differentiation capacity 
of labeled cells [86]. Study by Varma et al. [87] evaluated the dynamic 
biodistribution of systemically injected labeled human UCB derived 
EPCs and cytotoxic T-cells (CTLs)] in rat glioma model, which was 
monitored by In-111 oxine based SPECT imaging. Magnetically labeled 
cord blood EPCs can be in vitro expanded and cryopreserved for future 
use as MRI probes for monitoring the migration and incorporation to 
the sites of neovascularization in an orthotopic glioma rat model [77]. 
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Since, molecular and cellular imaging are essential in determination 
of bioavailability and efficacy of various drugs and targeting agents, 
exogenously labeled UCB cells can be used to determine the bio-
distribution of cells and therapeutic effects of UCB in brain lesions by 
MRI and UCB cells can be used as imaging probes.

Cord blood EPCs based gene therapies

For gene therapy, UCB EPC cells can be attractive as vehicles to 
deliver therapeutic molecules to the brain tumor area. EPCs possessed 
unique property to migrate to pathological lesions and showed active 
migration and incorporation into neovasculatures of glioma or in 
lesions when administered locally or systemically [87-89]. Tumor 
invasive properties of EPCs allow its possibility to use them as gene 
delivery vehicles to tumors [87-89]. EPCs based gene delivery offers 
several advantages over traditional gene therapy based on vectors or 
virus due to EPCs’ ability to cross tumor blood brain barrier (TBBB) 
and also their extended homing properties at the disease site [90,91]. 
Vascular endothelial growth factor (VEGF) gene delivery through 
EPCs enhances the proliferation and migration of human aortic 
endothelial cells following ultrasonic microbubble transfection (UMT) 
[92]. Similar strategies can be used to deliver VEGF to stroke sites by 
using transgenic EPCs. 

In cell based gene therapies, high level of therapeutic gene 
expression is important to get the desired effect at tumor/disease site. 
The transgene expression in EPCs depends on transduction process 
including promoter activity. Therefore, it is important to know 
promoter systems that can generate robust foreign gene expression 
in EPCs. We have evaluated and compared the ability of different 
commercially available promoters to drive the expression of transgenes 
in EPCs [89]. Strength of human cytomegalovirus (CMV) promoter, 
Simian virus 40 (SV40) promoter, mammalian Ubiquitin C (UBC) 
promoter and cellular polypeptide chain elongation factor 1 alpha 
(EF1) promoter was tested. We found that EF1 and CMV promoters 
are ideal for high level expression of transgene [89]. Recently, we have 
determine the migration and accumulation of genetically altered EPCs 
where UCB derived EPCs transduced to carry human sodium iodide 
symporter (hNIS) gene and injected into glioma bearing rats and we 
observed their migration to tumor site and functional expression of 
transgenes [91]. These experiments clearly highlight the capability 
of EPCs as gene delivery vehicles. Thus, cell based gene therapy is 
becoming an increasingly popular as alternative therapy for cancer 
and to accurately track these therapeutic cells has been critical for their 
success in clinical practice. 

Limitations and Future Directions 
Currently, UCB stem cells are latest and preferred tool over other 

types of pluripotent hematopoietic and mesenchymal stem cells for 
transplantation in animal- and patient- based studies [15]. It is clear 
that UCB derived cells have profound neurogenic potential. However, 
their regenerative property needs to be exploited in more efficient ways 
to treat neurological diseases. One of main hurdles in this direction 
is the limited availability of UCB in research uses. Therefore, major 
challenges are to expand or pool the available amount of UCB cells. 
Alternatively, other methods need to explore to boost the supply 
without losing its efficiency [15]. Thus, safe and effective protocols are 
required to establish for research and clinical use. Studies involving 
manipulation of UCB derived cells or subsets and mechanistic studies 
to validate the effect of transplantations are completely lacking. In 
addition, more awareness is required in basic science and clinical 
communities to collaborate and understand UCB’s efficient use 

to combat the disease burden. Our laboratory has established the 
exploitation of one under-recognized subset (AC133+ EPCs) within 
mononuclear fraction of UCB cells in various applications. 
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