Applying WEKA towards Machine Learning With Genetic Algorithm and Back-propagation Neural Networks

Zeeshan Ahmed¹** and Saman Zeeshan²

¹Department of Neurobiology and Genetics, Biocenter, University of Wuerzburg, Germany
²Department of Bioinformatics, Biocenter, University of Wuerzburg, Germany

Abstract

Machine learning aims of facilitating complex system data analysis, optimization, classification and prediction with the use of different mathematical and statistical algorithms. In this research, we are interested in establishing the process of estimating best optimal input parameters to train networks. Using WEKA, this paper implements a classifier with Back-propagation Neural Networks and Genetic Algorithm towards efficient data classification and optimization. The implemented classifier is capable of reading and analyzing a number of populations in giving datasets, and based on the identified population it estimates kinds of species in a population, hidden layers, momentum, accuracy, correct and incorrect instances.

Keywords: Back Propagation Neural Network; Genetic Algorithm; Machine learning; WEKA

Introduction

Machine learning [1] is a branch of Artificial Intelligence, facilitating probabilistic system development for complex data analysis, optimization, classification and prediction. Different learning methods have been introduced e.g. supervised learning, unsupervised learning, semi supervised learning, reinforcement learning, transduction learning and learning to learn etc.

Several statistical algorithms (e.g. Genetic Algorithm [2], Bayesian statistics [3], Case-based reasoning [4], Decision trees [5], Inductive logic programming [6], Gaussian process regression [7], Group method of data handling [8], k-NN [9], SVMs [10], Ripper [11], C4.5 [12] and Rule-based classifier [13] etc.) have been proposed for the learning behavior implementation. The criterion for choosing a mathematical algorithm is based on the ability to deal with the weighting of networks, chromosome encoding and terminals.

Different machine learning approaches have been proposed towards the implementation of adaptive machine learning systems and data classification e.g. Fast Perceptron Decision Tree Learning [14], Massive Online Analysis (MOA) [15], 3D Face Recognition Using Multi view Key point Matching [16], Evolving Data Streams [17], Classifier Chain [18], Multi-label Classification [19], Multiple-Instance Learning [20], Adaptive Regression [21], nearest neighbor search [22], Bayesian network classification [23,24], Naive Bayes text classification [25], ML for Information Retrieval [26], Probabilistic unification grammars [27], Instance Weighting [28], KEA [29] and Meta Data for ML [30] etc. Apart from the fact of existence of these referred valuable approaches, we have decided to implement our own software application during this research and development, consisting of different methodology.

In this research, we are interested in finding the most suitable algorithm to establish the process of estimating best optimal input parameters and on the basis the selected parameters, train network to best fit with the use of suitable learning techniques. We discuss a script implementing the Genetic Algorithm for data optimization and back propagation neural network algorithm for the learning behavior. The objective is to analysis different datasets based on the number of attributes, classes, instances and relationships.

Keywords: Back Propagation Neural Network; Genetic Algorithm; Machine learning; WEKA

Keywords: Back Propagation Neural Network; Genetic Algorithm; Machine learning; WEKA

Introduction

Machine learning [1] is a branch of Artificial Intelligence, facilitating probabilistic system development for complex data analysis, optimization, classification and prediction. Different learning methods have been introduced e.g. supervised learning, unsupervised learning, semi supervised learning, reinforcement learning, transduction learning and learning to learn etc.

Several statistical algorithms (e.g. Genetic Algorithm [2], Bayesian statistics [3], Case-based reasoning [4], Decision trees [5], Inductive logic programming [6], Gaussian process regression [7], Group method of data handling [8], k-NN [9], SVMs [10], Ripper [11], C4.5 [12] and Rule-based classifier [13] etc.) have been proposed for the learning behavior implementation. The criterion for choosing a mathematical algorithm is based on the ability to deal with the weighting of networks, chromosome encoding and terminals.

Different machine learning approaches have been proposed towards the implementation of adaptive machine learning systems and data classification e.g. Fast Perceptron Decision Tree Learning [14], Massive Online Analysis (MOA) [15], 3D Face Recognition Using Multi view Key point Matching [16], Evolving Data Streams [17], Classifier Chain [18], Multi-label Classification [19], Multiple-Instance Learning [20], Adaptive Regression [21], nearest neighbor search [22], Bayesian network classification [23,24], Naive Bayes text classification [25], ML for Information Retrieval [26], Probabilistic unification grammars [27], Instance Weighting [28], KEA [29] and Meta Data for ML [30] etc. Apart from the fact of existence of these referred valuable approaches, we have decided to implement our own software application during this research and development, consisting of different methodology.

In this research, we are interested in finding the most suitable algorithm to establish the process of estimating best optimal input parameters and on the basis the selected parameters, train network to best fit with the use of suitable learning techniques. We discuss a script implementing the Genetic Algorithm for data optimization and back propagation neural network algorithm for the learning behavior. The objective is to analysis different datasets based on the number of attributes, classes, instances and relationships.

Keywords: Back Propagation Neural Network; Genetic Algorithm; Machine learning; WEKA

Keywords: Back Propagation Neural Network; Genetic Algorithm; Machine learning; WEKA

Introduction

Machine learning [1] is a branch of Artificial Intelligence, facilitating probabilistic system development for complex data analysis, optimization, classification and prediction. Different learning methods have been introduced e.g. supervised learning, unsupervised learning, semi supervised learning, reinforcement learning, transduction learning and learning to learn etc.

Several statistical algorithms (e.g. Genetic Algorithm [2], Bayesian statistics [3], Case-based reasoning [4], Decision trees [5], Inductive logic programming [6], Gaussian process regression [7], Group method of data handling [8], k-NN [9], SVMs [10], Ripper [11], C4.5 [12] and Rule-based classifier [13] etc.) have been proposed for the learning behavior implementation. The criterion for choosing a mathematical algorithm is based on the ability to deal with the weighting of networks, chromosome encoding and terminals.

Different machine learning approaches have been proposed towards the implementation of adaptive machine learning systems and data classification e.g. Fast Perceptron Decision Tree Learning [14], Massive Online Analysis (MOA) [15], 3D Face Recognition Using Multi view Key point Matching [16], Evolving Data Streams [17], Classifier Chain [18], Multi-label Classification [19], Multiple-Instance Learning [20], Adaptive Regression [21], nearest neighbor search [22], Bayesian network classification [23,24], Naive Bayes text classification [25], ML for Information Retrieval [26], Probabilistic unification grammars [27], Instance Weighting [28], KEA [29] and Meta Data for ML [30] etc. Apart from the fact of existence of these referred valuable approaches, we have decided to implement our own software application during this research and development, consisting of different methodology.

In this research, we are interested in finding the most suitable algorithm to establish the process of estimating best optimal input parameters and on the basis the selected parameters, train network to best fit with the use of suitable learning techniques. We discuss a script implementing the Genetic Algorithm for data optimization and back propagation neural network algorithm for the learning behavior. The objective is to analysis different datasets based on the number of attributes, classes, instances and relationships.
to perform cross over using a pair of the best results (Figure 1). The next mutation of two offspring is performed on the basis of obtained accuracies of two previously estimated offspring. The offspring with lower values are replaced with two new offspring. In the last steps, after cross validation, the individual and commutative weights of instances are calculated. The obtained results are validated and final output is presented to the user in the end. The measurement and prediction procedure can be repeated until the satisfactory results are achieved.

Validation

We have validated the classifier using two different data sets: Zoo database (http://www.hakank.org/weka/zoo.arff) and Labor database.
Bavaria Germany.

anonymous reviewers for helpful comments on the manuscript and the Land of

value of classifier it will take more time.

decreasing it. Moreover, we have also observed that classifier produces

the outcome that mutation can affect the accuracy by increasing and

the weight of instance the size of results increases. The findings lead to

default weight of instance, the results become stable but by increasing

6.

2.

5.

References

Acknowledgement

for learning rate and 3 bit decimal values for momentum.

size of the chromosome was 6 bits, 3 bit decimal value (0-10/10=value)

by randomly changing the weight. During the validation process the

constant, (2) by increasing both learning rate and momentum and (3)

ways: (1) by increasing the learning rate and placing the momentum

and 2D) are presented in Table 1. We have validated the classifier in three

assistance, long term disability assistance and education alliance) (Table

wage increase first year, wage increase second year, wage increase third

cost of living adjustments, working hours, pension, standby pay, shift
differential, statutory holidays, vacations, contribution dental plan and

contribute to health plan) and 3 Boolean attributes (bereavement

Instances with of 18 Attributes; 2 numeric attributes (animal and legs)

and 16 Booleans attributes (hair, feather, eggs, milk, airborne, aquatic,
predator, toothed, backbone, breathes, venomous, fins, legs, tail,
domestic, cat size and type). Whereas the Labor database comprises of

57 instances including of 16 Attributes; 13 numeric attributes (duration,
wage increase first year, wage increase second year, wage increase third

cost of living adjustments, working hours, pension, standby pay, shift
differential, statutory holidays, vacations, contribution dental plan and

contribute to health plan) and 3 Boolean attributes (bereavement

and contribute to health plan) and 3 Boolean attributes (bereavement

assistance, long term disability assistance and education alliance) (Table

Both datasets are analyzed using implemented classifier, using

WEKA explorer (Figure 2A and 2C). The observed results are (Figure 2B

and 2D) are presented in Table 1. We have validated the classifier in three

ways: (1) by increasing the learning rate and placing the momentum constant, (2) by increasing both learning rate and momentum and (3)

by randomly changing the weight. During the validation process the size of the chromosome was 6 bits, 3 bit decimal value (0-10/10=value)

for learning rate and 3 bit decimal values for momentum.

Conclusions

We have observed during the validation process that by keeping the
default weight of instance, the results become stable but by increasing
the weight of instance the size of results increases. The findings lead to
the outcome that mutation can affect the accuracy by increasing and
decreasing it. Moreover, we have also observed that classifier produces
results in minimum possible time with value 1, and if we will increase the value of classifier it will take more time.

Acknowledgement

We would like to thank Deutsche Forschungsgemeinschaft (DFG SFB 1047/Z)
for funding and University of Wuerzburg Germany for the support.We thank
anonymous reviewers for helpful comments on the manuscript and the Land of

Bavaria Germany.

References

