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Introduction
Mathematical modelling of real-life problems usually results in 

functional equations, such an ordinary or partial differential equations, 
integral and integro-differential equations and stochastic equations. 
Many mathematical formulations of physical phenomena contain 
integro-differential an equation, these equations arises in many fields 
like fluid dynamics, biological models and chemical kinetics. In fact, 
integro-differential equations are usually difficult to solve analytically 
so it is required to obtain an efficient approximate or numerical 
solution [1,2].

There are several solution methods including Galerkin, collocation, 
Block Pulse Functions and direct method, for integro-differential 
equations have been studied [3-8].

In this study Bernstein polynomial method (BPM) is used to solve 
the linear Volterra-Fredholm integro-differential equation of the 
second kind:
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with the initial condition y(i)(a)=yi, i=1,…., m

where a,b,λ1,λ2,yi are constants values, f(x),k1(x,t),k2(x,t) and µi,i=1,...,m 
with µi(x)≠0 are known functions that have derivatives on an interval a 
≤ x ≤ t ≤ b and y(x) is the unknown function which must be determined.

Bernstein Polynomials Method
Polynomials are incredibly useful mathematical tools as they are 

simple to define, can be calculated quickly on computer systems and 
represent a tremendous variety of functions. The Bernstein polynomials 
of degree-n are defined by [9]:
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, n is the degree of polynomials, i is the index of 

polynomials and t is the variable.

The exponents on the t term increase by one as i increase, and the 

exponents on the (1-t) term decrease by one as i increases.

The Bernstein polynomials of degree-n can be defined by blending 
together two Bernstein polynomials of degree-(n-1) that is, the kth nth-
degree Bernstein polynomial can be written as [9]:
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Bernstein polynomials of degree-n can be written in terms of the 
power basis. This can be directly calculated using equation (2) and the 
Binomial theorem as follows [9]:
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where the Binomial theorem is used to expand (1-t)n-k.

The derivatives of the nth-degree Bernstein polynomials are 
polynomials of degree-(n-1).
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A Matrix Representation for Bernstein Polynomials
In many applications, a matrix formulation for the Bernstein 

polynomials is useful. These are straight forward to develop if only 
looking at a linear combination in terms of dot products. Given a 
polynomial written as a linear combination of the Bernstein basis 
functions [10]:
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The dot product of two vectors
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which can be converted to the following form:
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where bnn are the coefficients of the power basis that are used to 
determine the respective Bernstein polynomials, we note that the 
matrix in this case is lower triangular. The matrix of derivatives of 
Bernstein polynomials
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Solution for Volterra-Fredholm Integro-Differential 
Equations of the Second Kind

In this section, Bernstein polynomials method is proposed to find 
the approximate solution for Volterra-Fredholm integro-differential 
equations of the second kind. 

Consider the Volterra-Fredholm integro-differential equations of 
the second kind in equation (1):

( )
1 1 2 2

0

( ) ( ) ( , ) ( ) ( , ) ( )   , ,
x bm

i
i

i a a

y x f x k x t y t dt k x t y t dt x a bµ λ λ
=

= + + ∈  ∑ ∫ ∫     (8)

Let y(x)=B(t) then,
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Substituting (9) into equation (8), we get:
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Applying equation (7) into equation (10), we have:
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Now to find all integration in equation (11). Then in order to 
determine C0,C1,…,Cn we need n equations. Now chose xi,i=1,2,3,…,n 
in the interval [a,b], which gives n equations. Solve the n equations 
by Gauss elimination to find the values of C0,C1,…,Cn. The following 
algorithm summarizes the steps for finding the approximate solution 
for the second kind of linear Volterra-Fredholm integro-differential 
equations.

Algorithm (BPM)
Input: (f(x),k(x,t),y(x),a,b,x,λ1,λ2) 

Output: Polynomials of degree n

Step 1: Choice n the degree of Bernstein polynomials

( ) (1 )    0,1,2, ,n i n i
i

n
B t t t for i n

i
− 

= − = 
 



Step 2: Put the Bernstein polynomials in linear Volterra-Fredholm 
integro-differential equations of second kind.
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Compute Volterra integral 
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Step4: 

Compute C0,C1,…,Cn, where xi,i=1,2,3,…,n, xi∈[a,b] 

End. 

Numerical Examples 
In this section, two numerical examples are exhibited to illustrate 

the Bernstein polynomials method. The computations associated with 
the examples were performed using Matlab ver.2013a.

Example 1: Consider the linear Volterra-Fredholm integro-
differential equation of the second kind [11].
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with the initial condition u(0)=1, 0 ≤ x ≤ 1 

Where f(x)=sin(x)–x2 cos(x)–x3 sin(x)+x2–x2 sin(1)+x cos(1)+x sin(1)–
x and the exact solution is u(x)=cos(x).

Tables 1 and 2 show that numerical results and the error respectively 
with the exact solution for Example 1 for n=1,4 and 7 by using BPM 
(Figure 1). 

Example 2: Consider the linear Volterra-Fredholm integro-
differential equation of the second kind [12].

1

0 0

( ) 2 2 ( ) ( )  , (0) 0
x

xu x e u t dt u t dt u′ = − + + =∫ ∫
and the exact solution is u(x)=xex (Figure 2).

Comparison with other Methods
In this part, the BPM was compared its performance with 

Repeated Trapezoidal method and Repeated Simpson’s 1/3 Method. A 

parameters here such as the degree of BPM and the error are considered 
as comparison. Throughout this manuscript, the convergence 
test with the proposed method is considered the last square error. 
We can notice that all the methods on the finite interval [a,b]. In 
BPM we proposed that we have a solution and we can develop it by 
increasing the degree of Bernstein polynomials method. Accordingly, 
the solution is convergence by increasing the number of the limits of 
Bernstein polynomials resulted from increasing the degree of Bernstein 
polynomials n, and the error decreases as results of that. As for Repeated 
Trapezoidal method and Repeated Simpson’s 1/3 Method, the solution 
is a result of Trapezoidal and Simpson’s 1/3 laws. Consequently, the 
error in this methods decrease in speed depending the h value which in 
its turn depends on the number of n points as mentioned earlier. Also, 
the accuracy of solution increases with the increase of n points number 
and the result will be a decrease at h value. Finally, the following table 
shows the error between these methods for example 1 (Table 3).

t yexact yapp, n=1 yapp, n=4 yapp, n=7
0 1.000000000000000 1.000000000000000 1.000000000000000 1.000000000000000

0.100000000000000 0.995004165278026 0.855760000000000 0.994277930000000 0.995005924500000
0.200000000000000 0.980066577841242 0.711520000000000 0.985024480000000 0.980071699200000
0.300000000000000 0.955336489125606 0.567280000000000 0.968301130000000 0.955343773900000
0.400000000000000 0.921060994002885 0.423040000000000 0.940052480000000 0.921068390400000
0.500000000000000 0.877582561890373 0.278800000000000 0.896106250000000 0.877589062500000
0.600000000000000 0.825335614909678 0.134560000000000 0.832173280000000 0.825341536000000
0.700000000000000 0.764842187284489 -0.009680000000000 0.743847530000000 0.764847740700000
0.800000000000000 0.696706709347165 -0.153920000000000 0.626606080000000 0.696710246400000
0.900000000000000 0.621609968270664 -0.298160000000000 0.475809130000000 0.621608734900000
1.000000000000000 0.540302305868140 -0.442400000000000 0.286700000000000 0.540300000000000

Table 1: Numerical results for Example 1 with exact solution by using BPM.

(yexact-yapp, n=1)2 (yexact-yapp, n=4)2 (yexact-yapp, n=7)2

0 0 0
0.019388937563974 0.000000527417679 0.000000000003095
0.072117264470242 0.000024580793816 0.000000000026228
0.150587838752492 0.000168081913002 0.000000000053068
0.248024910467622 0.000360676540379 0.000000000054707
0.358540556423998 0.000343127021183 0.000000000042258
0.477170950153844 0.000046753663887 0.000000000035059
0.599884618595948 0.000440775634493 0.000000000030840
0.723565798654787 0.004914098234869 0.000000000012511
0.845976794532619 0.021257884440428 0.000000000001521
0.965703821958559 0.064314129541638 0.000000000005317

Table 2: The errors for Example 1 by using BPM.

Points Repeated Trapezoidal
h=0.01

Repeated Simpson’s 1/3
h=0.01

Bernstein polynomials
yapp, n=7

0.100000000000000 0.000492742 0.000492400 0.000000000003095
0.200000000000000 0.000969158 0.000967886 0.000000000026228
0.300000000000000 0.00142909 0.00142649 0.000000000053068
0.400000000000000 0.00187288 0.00186873 0.000000000054707
0.500000000000000 0.00230186 0.00229612 0.000000000042258
0.600000000000000 0.00271897 0.00271179 0.000000000035059
0.700000000000000 0.00312960 0.00312126 0.000000000030840
0.800000000000000 0.00354248 0.00353340 0.000000000012511
0.900000000000000 0.00397088 0.00396158 0.000000000001521
1.000000000000000 0.00443427 0.00440738 0.000000000005317

Table 3: Comparison the error between Trapezoidal and Simpson’s 1/3 Methods with BPM for Example 1.
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Conclusion 
In the present study we have successfully used the proposed 

method to find an approximation solution for solving a second kind 
Volterra-Fredholm integro-differential equation. We noted from our 
results the approximation solution is close to the exact solution when 
we only used the degree of BPM is n=4 in example 1 and the error 
is small but still impossible to get satisfactory results with using this 
degree. When n=7 the result becomes so accuracy, so efficiency and 
the curve of an approximation solution is exactly over the curve of the 
exact solution. The figuring comes about additionally demonstrate 
that this strategy is so productive and it can be successfully use in the 
numerical arrangement of such sort mathematical statements. The 
integro differential equations are usually difficult to solve analytically so 
they are required to obtain an efficient approximated method. For this 
reason, the presented method have been proposed for approximated 
solution to the linear Volterra-Fredholm integro-differential equations 
of the second kind. From numerical examples it can be seen that the 

proposed numerical method is efficient and accurate to estimate the 
solution of these equations. Also we noted that when the degree of 
Bernstein polynomials is increasing the errors decrease to smaller 
values.
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Figure 1: Approximation solutions and exact solution for Example 1 by using 
BPM.
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Figure 2: Approximation solutions and exact solution for Example 2 by using 
BPM.
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