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Arsenic efflux and its role in As tolerance in As-hyperaccumulators
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Arsenic (As) disturbs the primary metabolism of an organism,
which is detrimental [1]. For that reason, organisms have evolved
various mechanisms of As tolerance such as extrusion, intracellular
compartmentalization, repression of transporters, and a high tolerance
to reactive oxygen species and it is important to understand the
mechanisms to conquer its toxicity.

An As-hyperaccumulator, Pteris vittata, is a type of plant that is
able to accumulate 100 times more As than normal plants or organisms
that use the normal mechanisms mentioned above for As tolerance.
The fern not only tolerates As in very high concentrations, but also
predominantly accumulates it in the form of arsenite (AsIII), which
is a more toxic form of the As oxyanion. The accumulation level of
non-hyperaccumulators differs from those of non-hyperaccumulating
organisms. However, each of the known mechanisms for As tolerance
have been observed in various degrees or in certain parts of As-
hyperaccumulators, and it is not clear which strategy or combination
thereof is most effective for the tolerance of As by a plant.

In ancient times, when the primitive earth had no oxygen and was
under reductive conditions, it was assumed that bacteria first developed
and acquired a tolerance to AsIII, which predominates under reductive
conditions. Tolerance is achieved by exporting such toxic AsIII from
a single cell. For example, in Sinorhizobium meliloti, AsIII is excreted
from the cell via aquaglyceroporin, AqpS [2], and the tolerance system
for arsenate (AsV), such as AsV reductase is considered to be acquired
under latter oxidative conditions. Unlike bacterium, eukaryotic cells
have no intercellular organs, such as plastids or vacuoles (lysosomes), in
which to compartmentalize As. In the Saccharomyces cerevisiae system,
AsIII is conjugated using a thiol compound, glutathione (GSH), and
either sequestered into the vacuolar lumen as an As-(GS)3 complex or
excreted from the cell by AsIII transporters as with bacteria [3].

For plants, inorganic As species AsV and AslIIl, and organic
forms of As such as MMA and DMA, are available from the soil [4].
Of those, AsV is the dominant species incorporated into plants via the
phosphate (Pi) transport pathway, as AsV is a chemical analogue of
Pi. The subsequent metabolism of AsV by terrestrial plants has been
studied [5]. Similar to S.cerevisiae, after the incorporation of AsV into
the cell, AsV is transformed to AsIII by AsV reductase. AsIII is simply
excreted from the cell via aquaporin [6,7] or conjugated either by GSHs
or phytochelatins in the plant [8]; then, it is likely sequestered into the
vacuolar lumen by glutathione-S-transferase [9]. In a similar manner,
several plants produce thiol compounds for the detoxification of AsIII
[10,11] or repress the AsV uptake system by the roots [5,11]. In aquatic
plants, an increase in thiol compounds has been observed in response
to As exposure and a similar mechanism could be considered for As
detoxification [12,13].

However, in the As-hyperaccumulating plants, the role of thiol
1 compounds for AsIII detoxification is considered to be very small
[8,14]. As species in those plants and the behavior of As in the plant
body is distinct from that in other plants. Normally, As accumulation
in plants mostly range from 5-100 (Kabata-Pendias and Pendias, 1992)
and mostly less than 1 mg/kg in the leaf. In those particular plants,
As accumulation was 100 times more than normal plants with an
accumulation of the most-toxic AsIII found at the shoot [15].

Since much toxic AsIII is a dominant As species in the shoot,
compartmentalization of AsIII in the shoot cell is considered one of
the possible mechanisms of detoxification of AsIII in P. vittata. Energy
dispersive X-ray microanalyses (EDXA) of frond cells has shown
that a part of As is localized in the subcellular compartment, which
corresponds to a vacuole in epidermal cells [16]. For gametophytes,
ASIII was clearly localized in the vacuolar lumen, whereas AsV was
possibly moved into the cytosol [17]. Further, the AsIII membrane
transport protein, (tonoplast intrinsic protein) TIP, which directly
transports AsIII into the vacuolar lumen, was isolated and characterized
[18]. However, the expression of the AsIII transporter was limited to
root tips when exposed to As and no expression was observed in the
shoot. Thus, the compartmentalization of AsIII into the vacuole might
not be the best of the adaptive strategies for As tolerance by the frond
cell of P. vittata.

ASIII efflux from the root cell is known to be effective for AsIII
detoxification. The role of AsIII efflux for As detoxification is significant
in the A. thaliana root. In this plant, AsV taken up by the roots almost
exits the root as an AsIII species within 24 hrs [19]. Additionally, a
membrane transport protein of the aquaporin family, which is
responsible for AsIII efflux in the root of A. thaliana, is localized 1
on the plasma membrane of root tips [18]. It might be possible that
AsV, which was taken up by Pi transporters, phtl:1 and phtl:4 [20]
in A. thaliana were efficiently reduced to AsIII in the root cells and
excreted to the external environment. For As-hyperaccumulators,
ASIII efflux was also observed, but at a lower rate by comparison with
non-hyperaccumulators such as A. thaliana [21,22]. Additionally, the
excretion of AsV has been observed in As hyperaccumulators. However,
AsV efflux is also lower in As-hyperaccumulators. The low efflux of
AsIIT and AsV contributes to the As accumulation in the plant and
most of the incorporated As is efficiently translocated (loaded) to the
shoot. The idea of As efflux from a cell can be extended to shoot cells,
not only to the root. AsIII efflux is conserved among various plants
such as rice [23], tomatoes [24], and rootless duckweed [25]. If As is
excreted from the shoot cell, this could be helpful for As detoxification.
This speculation is supported by the results from the suspension cell
culture of P. vittata. A callus exhibited approximately three times
more As accumulation than A. thaliana callus [26]. However, maximal
accumulation of the cell cultures in this study seemed to be around
1,000 mg/kg DW, while the entire plant of P. vittata can accumulate a
maximum of 22,630 mg/kg DW of As [15]. Based on this observation,
Astolerance by the pinna cells is lower than the maximum accumulation
exhibited by the entire plant. It is also clear that high tolerance to
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oxidative stress is one of the significant factors for AsIII tolerance in P.
vittata. Singh et al. found a higher tolerance from oxidative damage for
P. vittata than for other non-hyperaccumulating ferns when exposed
to As [27], which was not as high as expected, however, based on the
differences in As accumulation 1 between the hyperaccumulators [15]
and non-hyperaccumulators.

When we consider the AsIII efflux from the pinna cell, it seems
there is no AsIII efflux to the apoplastic space, since there is no
significant accumulation in the cell wall and in the apoplastic fluid
[16]. Thus, the efflux of AsIII to the phloem of the companion cell is
suggested. There are a few reports of the phloem transport of As. In
the Castor bean, As was detected in the phloem sap [28], and, in rice,
the phloem transport of As from the flag leaf to the grain was observed
[29], but the As species accumulated in those examples were not AsIIL
Also, there is a difference in As accumulation between the young and
the mature frond. The lower As-accumulation in the frond could be a
sink for the As expected from the source frond. Further research at the
cellular level and in the behavior of As at the whole plant level should
be conducted in the future.
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