alexa Assessment of Farmers’ Perception of Climate Change and Variability and its Implication for Implementation of Climate-Smart Agricultural Practices: the Case of Geze Gofa District, Southern Ethiopia | Open Access Journals
ISSN: 2167-0587
Journal of Geography & Natural Disasters
Make the best use of Scientific Research and information from our 700+ peer reviewed, Open Access Journals that operates with the help of 50,000+ Editorial Board Members and esteemed reviewers and 1000+ Scientific associations in Medical, Clinical, Pharmaceutical, Engineering, Technology and Management Fields.
Meet Inspiring Speakers and Experts at our 3000+ Global Conferenceseries Events with over 600+ Conferences, 1200+ Symposiums and 1200+ Workshops on
Medical, Pharma, Engineering, Science, Technology and Business

Assessment of Farmers’ Perception of Climate Change and Variability and its Implication for Implementation of Climate-Smart Agricultural Practices: the Case of Geze Gofa District, Southern Ethiopia

Tesfaye Samuel Saguye*

Department of Disaster Risk Management and Sustainable Development, Institute of Cooperatives and Development Studies, Ambo University, Ethiopia

*Corresponding Author:
Tesfaye Samuel Saguye
Department of Disaster Risk Management and Sustainable Development
19, Ambo University, Ethiopia
Tel: +251-910127461
E-mail: [email protected]

Received Date: February 20, 2017; Accepted Date: March 01, 2017; Published Date: March 03, 2017

Citation: Saguye TS (2017) Assessment of Farmers’ Perception of Climate Change and Variability and its Implication for Implementation of Climate-Smart Agricultural Practices: the Case of Geze Gofa District, Southern Ethiopia. J Geogr Nat Disast 7: 191. doi: 10.4172/2167-0587.1000191

Copyright: © 2017 Saguye TS. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Visit for more related articles at Journal of Geography & Natural Disasters


Smallholder farmers are highly vulnerable to the impacts climate change, due to their dependence on agriculture for their livelihoods, reliance on rain-fed crops and location in marginal lands. Farmers have to perceive first that the climate has changed, and then identify effective and efficient climate change-smart agricultural practices climate and implement them. The main purpose of this study was to analyze factors determining the farming communities’ awareness of climate change and variability and it’s implication for implementation of climate change-smart farming practices. A multi stage sampling procedure followed to select sample respondent households and the total sample size of the study was 138 households. This study employed both qualitative and quantitative methods of data collection. Primary data were collected by using semi-structured interview schedule, focus group discussion (FGDs) and key informant interviews. Logistic regression model was used to estimate household demographic, socio-economic, institutional and biophysical factors that determine the farmers’ perception of climate change and variability in the area. The results indicated that about 88.73% of farmers believe that temperature in the district had become warmer and over 90% were of the recognized that rainfall volume; pattern, distribution and timing had changed, resulting in increased frequency of drought. Though the majority of the responders perceived climate change only 62.56% of the total respondents’ implemented climate change-smart agricultural practices while the remaining 37.5% had not adapted any climate change-smart agricultural practices. This could imply that though perception is the frontline prerequisite sequentially for adoption of climate change-smart agricultural practices decisions, it is not cure-all alone. From the findings of the logistic analyses, the local socio-economic, institutional and agro-ecological and the information on weather and climate were significant in determining the likelihood of a good perception and knowledge of climate change and variability. To enhance rural farmers’ awareness and adoption of climate change adaptation techniques, more focus should therefore be given to socio-economic (farm experience, education and training, access to weather related information household size, wealth, land ownership) factors as suggested by model results. So, effective communication, active community involvement and considering socio-cultural factors such as religious practices and rituals could be areas of policy implication of the study.


Climate change; Climate change-smart agriculture; Smallholder; Perception


Background and justification of the study

The Intergovernmental Panel on Climate Change [1] defined climate change as statistically significant variations in climate that persisted for an extended period, typically decades or longer. It includes shifts in the frequency and magnitude of sporadic weather events as well as the slow continuous rise in global mean surface temperature. Climate change is predicted to have the main impact on agriculture, economy and livelihood of the populations of under-developed world and mainly in Sub-Saharan [2,3]. Climate change is probably the most complex and challenging environmental problem facing the world today. Global climate change is one of the most critical challenges that the international community faces at present. Climate change and its variability pose severe risk to lives and livelihoods, particularly for the world’s poorest and the most vulnerable populations due to its adverse consequences on human health, food security, economic activities, natural resources and physical infrastructure [4,5]. Of all the sectors of any economy, agriculture being the main source of providing livelihoods to majority of the rural households is extremely vulnerable to climate change. The extent of vulnerability depends, along with exposure, sensitivity and upon adaptive capacity of a household [6]. Africa is one of the most vulnerable continents to climate change and climate variability where the situation is aggravated by the interaction of multiple stresses, occurring at various levels, and low adaptive capacity [7,8]. The agriculture sector is the backbone of the economies of most of the developing world, employing about 60% of the workforce and contributing an average of 30% gross domestic product (GDP) in sub-Saharan Africa. Climate change with expected long-term changes in rainfall patterns and shifting temperature zones are expected to have significant negative effects on agriculture, food and water security and economic growth in Africa; and increased frequency and intensity of droughts and floods is expected to negatively affect agricultural production and food security [9]. For instance, the recurrent droughts in many African countries have demonstrated the effects of climate variability on food resources [10]. The Continent is particularly vulnerable because of its ecological fragility, abject poverty, institutional weaknesses and political instability, now aggravated by climate change [11,12].

Agriculture in Africa must undergo a major transformation in the coming decades in order to meet the intertwined challenges of achieving food security, reducing poverty and responding to climate change without depletion of the natural resource base [13]. ‘Climatesmart agriculture’ (CSA) has the potential to increase sustainable productivity, increase the resilience of farming systems to climate impacts and mitigate climate change through greenhouse gas emission reductions and carbon sequestration [14]. Climate-smart agriculture can have very different meanings depending upon the scale at which it is being applied. For smallholder farmers in developing countries, the opportunities for greater food security and increased income together with greater resilience will be more important to adopting climatesmart agriculture than mitigation opportunities [15]. There are a number of household agricultural practices and investments that can contribute to both climate change adaptation – a private benefit – and to mitigating greenhouse gases (GHGs)—a public good. For instance, a striking feature of many SLM practices (boundary trees and hedgerows, multipurpose trees, woodlots, fruit orchards, crop rotations, greater crop diversity, production of energy plants, improved feeding strategies (e.g. cut and carry), fodder crops, improved irrigation (e.g. drip), terraces and bunds, contour planting, water storage (e.g. water pans), and many more ) and investments is that many of these activities also increase the amount of carbon sequestered in the soil or above ground, including agroforestry investments, reduced or zero tillage, use of cover crops, and various soil and water conservation structures [16-18]. Thus, there are often long-term benefits to households from adopting such activities in terms of increasing yields and reducing variability of yields, making the system more resilient to changes in climate. Such activities generate both positive “local” (householdlevel and often community-level) net benefits as well as the global public good of reduced atmospheric carbon. However, adoption of many climate change-smart agricultural practices has been very slow, particularly in food insecure and vulnerable regions in sub-Saharan Africa and Southeast Asia.

Smallholder farmers are highly vulnerable to the impacts climate change, due to their dependence on agriculture for their livelihoods, reliance on rain-fed crops and location in marginal lands [19]. There is a growing understanding that climate variability and change poses serious challenges to development in Ethiopia. The reason for this is that the mainstay of the Ethiopian economy is rain-fed agriculture, which is heavily sensitive to climate change and variability. The country is expected to experience changing patterns of rainfall, increased temperatures leading to elevated evaporation rates, and flooding; these will in turn lead to greater levels of land degradation, transmission of infectious disease, and loss of surface and ground water potential. The poor subsistence farmers, who on average account for 98% of the total area under crops and for more than 90% of the total agriculture output [20], are first line victims to the impacts of the changes in climate. It is a country with large differences across regions which are reflected in the country’s climate vulnerability. The lowlands are vulnerable to increased temperatures and prolonged droughts which may affect livestock rearing. The highlands may suffer from more intense and irregular rainfall, leading to erosion, which together with higher temperatures leads to lower total agricultural production. This, combined with an increasing population, may lead to greater food insecurity in some areas [21].

Determining farmers’ decision to adapt to and cope with shocks in one hand and for improving existing policies and to formulate new policies and supportive programs on the other hand; which types of farmers perceive that climate is changing is imperative to understand. Perception refers to the process of acquisition and understanding of information from one’s environment. Farmers have to perceive first that the climate has changed, and then identify useful adaptations and implement them. For farmers to decide whether or not to adopt a particular measure they must first perceive that climate change has actually occurred. Thus, perception is a necessary prerequisite for adaption. Therefore to enhance policy towards tackling the challenges that climate change poses to farmers, it is important to have full knowledge of farmers’ perception on climate change, potential adaptation measures, and factors affecting adaptation to climate change [22]. There is however, little knowledge whether farmers perceive climate change and have adopted adaptation measures. Hence, this paper seeks to explore farmers’ perception and it’s implication for adoption of climate change-smart agricultural practices. As to the knowledge of the researcher, no earlier study was conducted on the on the knowledge and perception, and determinants of farmers’ perception of climate change and it’s implication for adoption of climate changesmart agricultural practices in this study area. Hence, considering this knowledge gap, the researcher would study on the local level of smallholder farmers’ perception of climate change and variability in Geze Gofa Woreda. Therefore, the purposes of this study were to (1) to identify farmers’ perceptions on trends of local climate change and variability and (2) to identify factors influencing farmers’ perception of climate change and variability in the study area.


Description of the study area

The study was conducted in Geze Gofa Woreda, which is one of the 15 districts located in Gamo Gofa Zone, Southern Ethiopia. The administrative center of Geze Gofa district, Bulki town, is located at a distance of 251 kilometers from the Zonal capital, Arba Minchi town, and 517 kilometers south west of Addis Ababa the capital city of Ethiopia. Part of the Gamo Gofa Zone, Geze Gofa is bordered on the south by Oyda woreda , on the west by Basketo special woreda, on the northwest by Melokoza woreda , and on the east by Demba Gofa woreda . It is located approximately between coordinate 10033’06’’ to 10050’24’’ North latitude and 37042’36’’ to 37058’24’’ East longitude. Topographically, the area lies in the altitudes range of 690 m to 3196 m.a.s.l. As a result, the area is characterized by three distinct agroecological zones-Highland (Dega), Midland (Woina Dega), and Lowland (Kola), according to the traditional classification system, which mainly relies on altitude and temperature for classification [23-26].

The area is highly food insecure due to a combination of factors: high population density, small landholdings, low soil fertility and land degradation and rainfall irregularities. The main food crops are maize, enset, sweet potatoes, taro, teff, and yams. Enset and root crops are an important hedge against losses of the less drought-resistant maize; but need forces the poorer majority of households to cut their enset before it matures, forfeiting 2/3 of potential food from the plant. Although all wealth groups sell some crops, none makes as much as half of annual earnings from this. Better-off and middle groups earn most of their cash from livestock and butter sales, whilst casual work is main source of cash for the poor. There are two (bimodal-belg and meher) distinct rainy seasons: the smaller one is the belg, from March to May. The main rains are in the meher season from July to September. The maize cycle straddles both seasons, whilst teff is a shorter cycle crop depending only on the meher, and therefore offers an important ‘second chance’ for those who can grow it when the belg season fails. Sweet potatoes are a particularly important crop, because two harvests per year practiced, with the principal one in the dry season of November-January; but the second, smaller harvest breaks the annual ‘hunger’ period in May-June. The staple foods are in order of amount consumed: maize, enset, sweet potatoes, taro, teff and yams.

The dual dependency on cereals and perennial/root crops offers some insurance against at least moderate rain failure, since maize is more susceptible than either root crops or enset to long breaks between showers and/or overall moisture deficit. Lack of grazing lands and fodder affect oxen production, so that only the better off and middle wealth group households who own all the plow-oxen are able to till the land efficiently, whilst others have to wait their turn to borrow teams of oxen [27-35]. Even for middle and better off households, the high prices of inputs, especially chemical fertilizers and improved seed, coupled with a lack of agricultural credit facilities, limit agricultural productivity. In the last five years, food aid for poorer people has been a regular feature. Enset as perennial offers a store of food, but it is a store which takes four or more years to fill: when trees are cut one part of the store is evidently lost for as many years as it takes for a replacement to grow. In an area of such frequent food stress, there is a high tendency for people to go beyond the long-term sustainability of the stand of Enset stems [36-38].

Sampling technique and procedure

This study is based on a cross-sectional household survey data from mixed crops and livestock farmers. To examine the farm-level perceptions of climate change and associated adaptation strategies in Geze Gofa Woreda, the selection of study area took into account three distinct Agroecological Zones (AEZs) [39,40]. The study followed a multi-stage sampling procedure to select sample respondent households. Geze Gofa Woreda was purposively selected at first. The Woreda was purposely selected because of the frequency, intensity and duration of climate change and weather extremes related events observed and personal acquaintance with the study area. Also the Zonal weather related reports shows that almost all Woredas in the zone experiencing climate variability and changes. Secondly Study Kebeles were identified and stratified into three based on their agroecology, accordingly one kebele from highland agro-ecology (Dega), one kebeles from midland (Woina Dega) and one kebele from lowland agro-ecology (Kola) and total of three Kebeles (namely Aykina Gorpha, Aykina Fane and Aykina Tsila) were purposely selected to represent Highland (Dega), Midland (Woina Dega), and Lowland (Kolla) agro-ecological zones respectively. Finally, the sample size of the study was determined to be 138 household heads [41-45]. The purpose of analysis in relation to agro-ecological differentiation is to investigate how farmers living in different agro-ecologies perceive, and adapt climate change and how different agro-ecologies are affected by climate change and variability.

Data type, sources and methods of collection

The study used both quantitative and qualitative data as well as primary and secondary data sources. Primary data were collected through semi-structured interview schedules, focus group discussions (FGDs) and key informant interviews. Structured and unstructured questionnaires were used to investigate whether farmers had noticed long-term changes in temperature, rainfall, and vegetation cover over the past 20 years [46-48]. Farmers’ perception of climate change is considered as an aggregated awareness about the trend of the following five climatic parameters (temperature intensity and duration, rain onset and offset, rain intensity, drought, floods) generated from the historical climate records of the research area [49,50]. In the survey, farmers were asked to evaluate the temperature and precipitation trends of the area over the last two to three decades. Information was collected on demographic characteristics, physical asset, livestock and land ownership, crop management practices, access to credit and extension services, prior experience with climatic and non-climatic shocks, and perceptions about climate change. Besides collecting data on different socioeconomic and environmental attributes, the survey also included information on farmers’ perceptions of climate change and adaptation methods. The surveyed farmers were asked questions about their observation in the temperature and rainfall patterns over the past 20 years [51,52].


Select your language of interest to view the total content in your interested language
Post your comment

Share This Article

Relevant Topics

Article Usage

  • Total views: 710
  • [From(publication date):
    March-2017 - Sep 26, 2017]
  • Breakdown by view type
  • HTML page views : 604
  • PDF downloads :106

Post your comment

captcha   Reload  Can't read the image? click here to refresh

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals


[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version