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Introduction
Water quality has greatly deteriorated worldwide in the past 

decades, which is affected by both natural processes (precipitation 
rate, weathering processes, and soil erosion) and anthropogenic effects 
associated with excessive exploitation of water resources and untreated 
discharge of municipal and industrial wastewater [1-7]. The temporal 
and spatial variations in surface water quality have been monitored 
by governments for years in order to prevent pollution of surface 
water bodies. However, long-term monitoring datasets are large, with 
complex matrixes comprising numerous physicochemical parameters. 
Therefore, it is often difficult for planners to extract meaningful 
information from these datasets, identify significant parameters, and 
apportion pollution sources [7-9]. Multivariate statistical techniques 
such as cluster analysis (CA), principal component analysis (PCA), and 
factor analysis (FA) can be used to inspect complex datasets, evaluate 
water quality, and assess pollution sources. In recent years, a number of 
studies have comprehensively applied different multivariate statistical 
techniques in water quality assessments for optimizing monitoring 
networks, selecting representative water quality parameters without 
losing meaningful information [5,6,10-12]. 

In this study, 18 water quality parameters were selected and 
collected from 2010 to 2015 at 9 sampling stations in Yancheng city, 
China. The multivariate statistical methods (i.e., CA, PCA, and FA) 
were applied to analyze the water quality data. Firstly, similarities and 
dissimilarities among 9 sampling stations were classified by mean of 
CA. Secondly, the complex water quality datasets were analyzed to 
extract latent water quality factors using PCA and FA. Finally, the 
effects of possible pollution sources on water quality were identified.

Methods
Study area

Yancheng city (32°51′–34°12′N, 119°34′–120°27′E) is an eastern 
coastal district in the center of Jiangsu Province, China, with a 
population of more than 8 million. It is bordered by the Yellow Sea to 

the east, and is adjacent to Yangzhou and Huai’an cities to the west, 
Lianyungang city to the north, and Nantong and Taizhou cities to 
the south. The district covers an area of about 14,983 km2, including 
48.54 km2 in urban districts, while the remaining area is divided into 
nine counties, cities, and zones including Dongtai city, Dafeng city, 
Xiangshui County, Binhai County, Funing County, Jianhu county, 
Sheyang County, Tinghu Zone, and Yandu Zone. The drinking water 
of Yancheng city is supplied by Mangshe River and Tongyu River, 
which receive pollutants from domestic sewage, agricultural runoff, 
aquaculture wastewater, and industrial effluent. Mangshe River 
originates in Dazong Lake and discharges into the East Sea; with a total 
length of nearly 50 km. Tongyu River has a total length of 415 km, 
originating from Chang Jiang River and ending in Lianyungang city. 
The middle reach of Tongyu River runs through Yancheng city, with 
a length of 183.6 km and mean flow rate of about 100 m3/s. At Wuyou 
Port in Tongyu River, surface water is severely polluted by domestic 
wastewater from nearby settlements. Along the rivers there are nine 
monitoring sites (Fenghuang Bridge, Qinnanxi Bridge, Dazong Lake, 
Dongtai Bridge, Baiju Bridge, Shuini Bridge, Xin-Gou, Datuan Bridge, 
and Wuyou Bridge) (Figure 1). Water quality parameters including 
water temperature (T), pH, dissolved oxygen (DO), chemical oxygen 
demand (CODCr), 5-day biochemical oxygen demand (BOD5), 
ammonia nitrogen (NH4

+), total phosphorus (TP), total nitrogen (TN), 
fluoride (F-), sulfate (SO4

2-), chloride (Cl-), nitrate (NO3
-), alkalinity, 

turbidity, total dissolved solids (TDS), nitrite (NO2
-), Fecal coliforms 

(F. coli), and Escherichia coliforms (E. Coli) were selected to represent 
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water quality characteristics, and analyzed semiannually from 2010 
to 2015 according to standard methods (APHA, 1998). All the water 
quality parameters are expressed in mg L-1, except temperature (°C), 

pH, turbidity (NTU), fecal coliforms (CFU/100 mL), and Escherichia 
coliforms (CFU/100 mL). The statistical summary of the water quality 
parameters sampled at nine monitoring site was shown in Table 1.

 

1 = Xiangshui County                             6 = Tinghu Zone 
2 = Binhai County                                   7 = Yandu Zone 
3 = Funing County                                  8 = Dafeng County 
4 = Sheyang County                                9 = Dongtai County 
5 = Jinahu County 

Figure 1: Sampling sites in Yancheng city.

Parameters Site 1 Site 2 Site 3 Site 4 Site 5 Site 6 Site 7 Site 8 Site 9

T (°C)
Range 14.3-27 14.2-26.8 14.6-26.6 5.2-27.4 5.2-27.2 16.2-19.1 14.2-19.2 5.6-26.8 18.4-26.8
Mean 21.14 21.45 21.34 20.63 20.38 18.8 18.4 20.3 24.6
S.D. 5.21 4.99 5.03 6.66 6.64 4.51 5.01 7.07 3.99

pH
Range 7.2-8.2 7.3-8.1 7.5-8.3 7.3-8.1 7.3-8.1 7.44-7.58 7.42-7.64 7.3-8.1 7.4-8
Mean 7.70 7.61 7.74 7.58 7.60 7.6 7.6 7.6 7.7
S.D. 0.29 0.26 0.33 0.19 0.23 0.12 0.09 0.26 0.32

DO (mg/L)
Range 3.3-8.5 3.5-7.7 3.1-8.6 3.5-8.1 3.90-8.60 6.5-7.1 6.8-7.1 3.1-7.2 4-5
Mean 5.71 5.85 6.27 5.79 5.58 6.6 6.4 5.5 4.3
S.D. 1.63 1.42 1.80 1.75 1.66 0.91 1.33 1.47 0.45

CODCr (mg/L)
Range 20.9-45.8 16.9-35.5 17.8-50.4 20.3-38.3 19.6-40.7 29.7-32.2 18.5-30.7 18.7-42.0 25.7-46.9
Mean 33.35 29.80 33.38 31.35 30.67 29.5 28.9 32.2 33.9
S.D. 8.21 5.06 7.88 5.22 6.24 4.82 5.88 7.54 10.21

BOD5
(mg/L)

Range 2.0-6.0 2.0-4.0 2.0-4.0 2.0-5.0 2.0-7.0 2.5-3 2.5-4 2-3.5 1-3
Mean 2.86 2.77 2.82 2.88 2.88 2.6 2.9 2.5 2.0
S.D. 1.19 0.69 0.64 0.88 1.37 0.22 0.65 0.56 0.82

NH4
+

(mg/L)

Range 0.1-1.0 0.1-0.9 0.1-1.1 0.1-0.9 0.1-1.2 0.5-1.3 0.4-0.8 0.2-1.0 0.2-0.8
Mean 0.49 0.51 0.44 0.56 0.62 0.8 0.6 0.6 0.6
S.D. 0.26 0.24 0.32 0.29 0.37 0.3 0.13 0.26 0.28

TP (mg/L)
Range 0.04-2.1 0.04-3.3 0.03-2.6 0.09-8.3 0.07-4.1 0.06-0.09 0.04-0.07 0.03-3 1.6-2.8
Mean 1.03 1.01 0.80 1.82 1.55 0.1 0.1 1.4 2.4
S.D. 0.88 1.06 0.9 2.34 1.53 0.06 0.1 1.43 0.52

TN (mg/L)
Range 0.1-3.59 0.1-4.49 0-3.07 0.1-3.62 0.1-4.09 2.98-3.18 3.03-5.12 0.2-4.11 0.2-0.8
Mean 1.62 1.81 1.39 2.02 1.98 3.2 3.4 2.3 0.5
S.D. 1.38 1.55 1.29 1.61 1.48 0.2 0.98 1.65 0.28

F-

(mg/L)

Range 0.4-0.77 0.41-0.74 0.45-0.7 0.34-0.59 0.46-0.68 0.49-0.6 0.49-0.82 0.4-0.7 0.5-0.6
Mean 0.60 0.55 0.59 0.46 0.52 0.7 0.6 0.6 0.6
S.D. 0.10 0.1 0.09 0.07 0.08 0.11 0.14 0.1 0.05

SO4
2+ (mg/L)

Range 26-64 29-59 29-76 33-69 27-69 45-48 49-68 36-71 23-73
Mean 44.00 44.00 52.36 48.83 49.42 49.8 51.2 51.6 42.6
S.D. 11.66 9.47 16.26 10.5 13.44 10.4 10.89 15.11 22.32

Cl- (mg/L)
Range 36-87 41-69 65-129 44-112 65-122 63-97 67-103 75-118 94-134
Mean 72.91 57.50 87.73 72.33 84.25 84.6 79.6 95.8 108.2
S.D. 14.49 9.57 18.64 18.94 16.06 15.13 16.91 14.15 17.63

NO3
- (mg/L)

Range 0.2-2.58 0.2-3.22 0.08-1.76 0.5-2.4 0.3-2.42 0.32-1.32 1.21-2.19 0.65-2.42 0.8-1
Mean 0.89 1.06 0.56 1.47 1.41 1.0 1.2 1.4 0.7
S.D. 0.69 0.78 0.48 0.64 0.66 0.82 0.68 0.6 0.38
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Multivariate statistical methods

Multivariate techniques including CA, PCA, and FA can reduce 
the dimensions of the data to enhance the quality of the analysis. 
Before performing CA and PCA/FA, datasets were standardized 
through z-scale transformation due to avoiding misclassification. 
Standardization tends to flatten the influence of variables’ variance 
range, as well as eliminates the effects of different units among variables. 
All of the mathematical and statistical computations were performed 
using SSPS ver. 19.0 for Windows 7.

CA: CA is a multivariate technique with the primary purpose of 
assembling objects with respect to predetermined selection criteria, 
resulting in high internal (within cluster) homogeneity and high 
external (between clusters) heterogeneity. Hierarchical agglomerative 
clustering is the most common approach, which yields intuitively 
similar relationships between any one sample and the entire dataset, 
and can be represented graphically displayed as a dendrogram 
[3,13,14]. Dendrograms provide a visual summary of the clustering 
process and present a picture of the groups and their proximity with 
a dramatic reduction in the dimensionality of the original data [3]. 
Euclidean distance is usually adopted to show similarity between two 
samples, and can represent the difference between the analytical values 
from the samples [3,15]. 

In this study, the spatial variability of water quality was determined 
by hierarchical agglomerative CA on normalized datasets using Ward’s 
method. The quotient between the links presented as Dlink/Dmax was 
multiplied by 100 to standardize the linkage distance [3,6,14,16]. 

PCA/FA: PCA is designed to form principal components (PCs), 
which are linear combinations of the original variables to transform 
the original set of inter-correlated variables into new, uncorrelated 
variables [6,17,18]. PCA focuses on the information from the most 
meaningful parameters, which minimizes the original dataset with 
the least loss of information [14,18]. PCA supplies an objective mode 
illustrating the variation in data as concisely as possible. As a result, a 
small number of factors can explain approximately the same amount of 

information as the much larger set of original observations. FA follows 
PCA, which further simplifies the data structure by reducing the 
contribution of less-significant variables by rotating the axis defined in 
the PCA. According to well-established rules, such as varimax rotation, 
new variables called varifactors (VFs) are constructed [7,14,19,20]. The 
difference between PCs and VFs is that PCs are a linear combination 
of variables (in this case, water quality variables), while VFs include 
unobservable, hypothetical, and latent variables [3,16,18]. In this paper, 
the VFs affecting river water quality were identified from large datasets 
using PCA/FA to distinguish possible pollution sources of sampling 
sites in the study area.

Results and Discussions
Spatial similarity and site grouping

Spatial CA was applied to detect similar groups among the 
sampling sites, and the results were presented as a dendrogram (Figure 
2). All of the nine sampling sites were grouped into three statistically 

turbidity 
(NTU)

Range 9-74.5 8-65 7.3-24 11-80 17-69 25.7-102.3 16.9-60.2 20-71 10-46
Mean 34.69 33.35 13.01 56.63 52.26 42.6 51.2 48.5 33
S.D. 16.5 17.25 5.09 48.33 37.16 33.91 27.32 15.36 15.5

Alkalinity 
(mg/L)

Range 137-194 111-168 112-175 102-203 0.2-195 127-207 131-193 137-189 135-176
Mean 160.73 138.3 143.3 161.50 151.8 166.8 156.6 157.0 150.8
S.D. 18.71 19.3 20.89 34.31 51.73 31.23 45.37 17.29 17.91

TDS (mg/L)
Range 278-458 271-476 276-497 265-479 271-481 344-451 344-456 326-484 314-456
Mean 362.55 370.75 378.45 379.75 380.92 401.6 385.6 419.1 359
S.D. 55.33 63.18 73.63 83.55 69.77 50.91 45.46 51.42 69.27

NO2
 - (mg/L)

Range 0-0.2 0-0.12 0-0.05 0-0.2 0-0.2 0.06-0.13 0.07-0.1 0.096-0.5 0.044-0.4
Mean 0.07 0.09 0.03 0.12 0.12 0.1 0.1 0.2 0.2
S.D. 0.04 0.03 0.02 0.07 0.07 0.03 0.01 0.12 0.18

F. coli 
(CFU/100mL)

Range 100-1200 100-1000 0-450 100-2400 240-2000 260-460 120-620 140-1600 440-3200
Mean 433 403 190 643.33 745.00 380 388.0 554.4 1155.0
SD. 312.54 232.54 127.45 599.61 616.09 109.54 222.98 458.51 1363.56

E. coli 
(CFU/100mL)

Range 40-270 3-1120 3-580 73-2420 46-2420 99-152 102-914 161-1986 68-816
Mean 149 365 136 510.89 840.22 126 508.0 659.9 357.3
S.D. 89.16 400.56 213.56 761.96 845.52 37.48 574.17 660.54 355.69

Note: Site 1=Feng-Huang Bridge; Site 2=Qin-Xi Bridge; Site 3=Da-Zong Lake; Site 4=Dong-Tai Bridge; Site 5=Bai-Ju Bridge; Site 6=Shui-Ni Bridge; Site 7=Xin-Gou; Site 
8=Da-Tuan Bridge; Site 9=Wu-You Bridge
SD: Standard deviation; DO: Dissolved oxygen; COD: Chemical oxygen demand; BOD5: 5-day biochemical oxygen demand; NH4+: Ammonia Nitrogen; TP: Total 
Phosphorus; 
TN: Total Nitrogen; F-: Fluoride; SO4

2-: Sulfate; Cl-=Chloride; NO3-; Nitrate; TDS; Total Dissolved Solids; NO2-: Nitrite; F. coli=Fecal coliforms 
and E. Coli: Escherichia coliforms 

Table 1:  Statistical summary of the water quality parameters at nine monitoring site.

Figure 2: Dendrogram of the spatial CA
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related clusters in a convincing manner using Dlink/Dmax ×.100˂20. 
The results indicated that group A includes Sites 1, 2, and 3 located 
in the upstream region of Mangshe River, group B comprises Sites 4, 
5, 6, 7, and 8 situated on Tongyu River and its tributary, and group 
C consists of Site 9, also located on Tongyu River. The three groups 
corresponded to relative low pollution sites (Site 1, 2, and 3), moderate 
pollution sites (Site 4, 5, 6 7, and 8), and relative high pollution sites, 
respectively. The classifications were statistically significant, because 
sites within the same group had similar natural and anthropogenic 
backgrounds. In group A, Sites 1, 2, and 3 received pollution from 
discharged domestic and industrial wastewater into Mangshe River. In 
group B, Sites 4, 5, 6, 7, and 8 were situated in the middle reaches of 
Tongyu River, receiving pollution from upstream sources, including 
domestic drainage and industrial wastewater. Finally, Site 9 (group 
C) received industrial pollution, domestic wastewater, and slaughter 
wastewater that drained into Wuyou Port, where concentrations of 
some water  quality parameters were high, including CODCr (33.9 
mg/L) and F. coli (1155 cfu/100 mL), while other parameters were very 
low such as DO (4.3 mg/L). The results indicate that hierarchical CA 
can provide a reliable tool to classify surface water, making it possible 
to design a monitoring strategy that can optimize the number of 
sampling sites and reduce related monitoring costs. For example, in the 
present study, the number of sampling sites could be reduced to one (or 
more) sampling site from each of groups A, B, and C to perform rapid 
assessments of water quality.

Data structure analysis

Correlation analysis: The correlation analysis with all the sampling 
stations were considered, and shown in Table 2. The results indicated 
that T correlates with SO4

2- which is also reported in other literature 
[21], pH correlates with NH4

+ since ammonia is pH-dependent [22,23], 
and TP has negative relationship with TN which can be explained that 
the river researched receive the same pollution sources [24]. 

Box plots of water quality parameters: The box plots of individual 
water quality parameters with the spatial variations corresponding to 

the three clusters from CA were shown in Figure 3. The water quality 
data of the same cluster were combined for a given parameter. The 
median concentration was showed by the line across the box. The first 
and third quartile values were showed at the bottom and top of the box. 
The lowest and highest observations were expressed by a vertical line 
extends from the bottom to the top of the box. 

From Figure 3a and 3b, it can be found that group C box plots of 
CODcr, SO4

2-, Cl-, NO2
-, and F. coli were the largest, while the smallest 

for DO, and TN. The reason is that group C corresponding to Site 
9 is located at Wuyou bridge on Tongyu river, which receive large 
quantities of industrial wastewater, domestic sewage, and wastewater 
from pig slaughterhouse. The box plot of DO concentration in Figure 
3c showed a decreasing trend in the order of group A>group B>group 
C, which verified that the results obtained from CA is reasonable. In 
box plot of CODcr concentration shown in Figure 3d, group C was the 
highest, while group B was the lowest, probably due to self-purification 
of Tongyu river. The box plots of pH and temperature showed minor 
difference among groups through CA. In addition, the box plots of 
turbidity, Alkalinity, SO4

2-, F-, and NH4
+ also showed small differences 

among groups. 

PCA/FA analysis: PCA is an effective pattern recognition technique 
used to interpret the variance of a large dataset of inter-correlated 
variables with a smaller set of independent components. Kaiser–
Meyer–Olkin (KMO) and Bartlett’s sphericity tests were performed on 
the parameter correlation matrix to examine the validity of the PCA. 
The results of the KMO and Bartlett’s sphericity tests were 0.586 and 
816.104, respectively, with a significance level of 0, indicating that PCA 
was useful for data reduction and that significant relationships were 
present among the variables. PCA was applied to a standardized dataset 
to identify the latent factors. The aim of this analysis was primarily to 
create an entirely new, smaller set of factors compared to the original 
dataset. The PCA revealed six PCs with eigenvalues>1 that explained 
about 75.39% of the total variance (Figure 4). These six PCs were 
responsible for 21.76%, 15.43%, 13.36%, 10.82%, 7.84%, and 6.18% of 

Variables 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 1.00
2 -0.29.22 1.00
3 -0.57 0.33 1.00
4 0.30 -0.08 -0.04 1.00
5 -0.55.36 0.22 0.59 -0.00 1.00
6 0.25 -0.67 -0.47 0.16 -0.19.08 1.00
7 -0.20 0.17 -0.08 -0.21 -0.07 0.14 1.00
8 0.18 -0.49 -0.06 0.03 0.03 0.20 -0.69 1.00
9 0.06 0.02 -0.04 -0.01 0.06 -0.05 -0.36 0.21 1.00
10 -0.75 0.24 0.30 -0.48 0.18 -0.24 0.25 -0.16 0.08 1.00
11 0.05 -0.19 -0.15 -0.05 -0.15 0.21 -0.11 0.15 0.31 0.25 1.00
12 -0.45 0.15 0.15 -0.38 0.11 -0.07 0.61 -0.23 -0.41 0.45 -0.16 1.00
13 0.11 -0.05 0.10 -0.19 -0.08 -0.15 -0.06 0.17 -0.25 0.01 -0.01 0.37 1.00
14 0.36 -0.17 -0.00 0.12 -0.08 0.01 -0.35 0.22 -0.04 -0.38 0.02 -0.26 0.12 1.00
15 -0.43.25 -0.04 0.37 -0.28 0.16 -0.16 -0.14 0.22 0.19 0.54 0.41 0.21 0.14 0.09 1.00
16 0.24 -0.06 -0.16 -0.23 -0.26 -0.02 0.04 0.20 -0.27 -0.06 0.11 0.1 0.42 0.12 0.07 1.00
17 0.21 -0.28 -0.07 0.15 0.15 0.22 -0.07 0.12 -0.29 -0.24 0.07 -0.08 0.36 0.03 -0.19 0.14 1.00
18 0.14 -0.03 0.05 -0.14.25 -0.14 -0.11 -0.05 0.14 -0.24 -0.04 -0.00 0.21 0.65 -0.03 -0.02 0.42 0.58 1.00

Note: Values in bold are corresponded to statistically significant correlation coefficients (r>0.65)(p<0.01).
1=Temprature; 2=pH: 3=DO; 4=CODCr; 5=BOD5; 6=NH4

+; 7=TP; 8=TN; 9=F-; 10=SO4
2+; 11=Cl-; 12=NO3

-; 13=Alkalinity; 14=Turbidity; 15=TDS; 16=NO2
-; 17=F. coli; 18=E. 

Coli
DO: Dissolved Oxygen; COD: Chemical Oxygen Demand; BOD5; 5-Day Biochemical Oxygen Demand; NH4+: Ammonia Nitrogen; TP; Total Phosphorus; TN: Total Nitrogen; 
F: Fluoride; SO4

2-: Sulfate; Cl-: Chloride; NO3-: Nitrate; TDS: Total Dissolved Solids; NO2-: Nitrite; F. coli=Fecal coli form; E. Coli: Escherichia coliforms 

Table 2: Correlation matrix of the parameters.
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Figure 3:  Box plots of 18 water quality parameters for different clusters.

the total variance, respectively. FA was performed further to reduce the 
contribution of less important variables to simplify the data structure 
resulting from the PCA. A varimax rotation of the PCs to six different 
VFs with eigenvalues>1 explained about 75.39% of the total variance 
(Table 3). As shown by the factor-loading matrix, the first VF (VF1), 
which explained 14.09% of the total variance, had a strong correlation 

with CODCr and a moderate correlation with SO4
2-, nitrate, and TDS. 

Therefore VF1 represented organic pollution from industrial point 
sources. The second VF (VF2), which explained 13.69% of the total 
variance, was correlated heavily with turbidity, E. coli, and F. coli, 
representing fecal pollution from domestic point sources. The third 
VF (VF3), which explained 13.56% of the total variance, had positive 
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loading on DO and BOD5 and negative loading on T, representing 
biochemical processes in the river and illustrating the fact that BOD5 
is degraded by the consumption of DO. The fourth VF (VF4) had 
significant loading on TP, alkalinity, and, to a lesser degree, TN, 
representing nutrient nonpoint sources from rainfall, agricultural 
runoff, atmospheric deposition, and livestock breeding. The fifth VF 
(VF5) had significant loading on pH and NH4-N due to pollution 
from untreated nonpoint domestic discharge. The sixth VF (VF6) had 
positive loading on fluoride and chloride, suggestive of the effects of 
natural factors such as soil leaching and weathering.

Source apportionment

The main pollution sources of the rivers were urban, agricultural, 
industrial, and domestic wastewater. The scores of the six VFs for each 
sampling site are plotted in Figure 5 to show differences in the pollution 
sources at the sampling sites. Higher VF scores were related to factors 
with greater influences on a sampling site. The results indicated that 
pollution sources differed greatly among the sampling sites. Firstly, 

Sites 1, 2, and 3 (group A) had higher VF3 scores and lower VF1, VF2, 
VF4, VF5, and VF6 scores (except Site 3 and VF6), indicating that they 
were polluted mainly by organic pollutants, not markedly affected 
by nonpoint sources of domestic, and agricultural wastewater. Site 3 
had a higher VF6 score, which illustrate that Dazong Lake receives 
rainfall runoff containing fluoride and chloride, as well as seepage of 
surrounding ground water, while the scores of VF2, VF4, and VF5 
were low, which indicated that Dazong Lake was almost not affected 
by domestic pollution and fecal pollution. Secondly, Sites 4, 5, 6, 7, and 
8 (group B) had higher VF1 and VF5 scores, indicating that they were 
mainly affected by organic industrial pollution and untreated domestic 
discharge. Among these sites, Sites 4 and 5 had similar characteristics 
with higher VF2 scores and moderate VF3 scores, which indicate that 
they also received fecal pollution from nearby pig slaughterhouse. Sites 
6, 7, and 8 had higher VF4 and VF6 scores, revealing that they were 
polluted with agricultural drainage, livestock breeding, and nearby 
rainfall. Although the five sites were grouped into one cluster, there 
exists a great difference between their pollution sources. Finally, Site 
9 (group C) was significantly affected by VF5 and moderately by VF2, 
illustrating that it was severely polluted with domestic drainage, also 
receiving industrial wastewater. From the above discussion, PCA/
FA proved to be a reliable tool for distinguishing sources of pollution 
among sampling sites. This technique could be used to inform policies 
of pollution source control. In addition, it could be used to strengthen 
government initiatives to improve the water quality of drinking water 
sources. 

Conclusions
In this paper, multivariate statistical techniques were applied 

to analyze surface water quality data from nine sampling sites in 
Yancheng, China. The spatial variations of surface water quality were 
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Figure 4: Scree plot of the eigenvalues of the PCs.

Element VF1 VF2 VF3 VF4 VF5 VF6
Temp -0.46 0.14 -0.73 0.34 0.07 -0.01

pH 0.03 -0.08 0.14 -0.27 -0.86 -0.06
DO 0.13 0.09 0.79 0.09 -0.33 -0.06

CODCr -0.73 -0.05 0.07 0.05 0.11 0.05
BOD5 -0.02 -0.08 0.83 0.04 -0.08 -0.08
NH4

+ -0.13 -0.08 -0.22 -0.10 0.88 -0.01
TP 0.28 -0.09 -0.17 -0.74 0.04 -0.43
TN 0.04 0.19 0.10 0.68 0.40 0.29
F-

-0.08 -0.33 0.00 0.14 -0.14 0.73

SO4
2+ 0.69 -0.05 0.34 -0.40 -0.11 0.29

Cl- 0.19 0.09 -0.16 -0.07 0.23 0.75
NO3

- 0.62 0.19 0.16 -0.39 0.05 -0.44
Turbidity 0.27 0.77 -0.05 0.18 -0.07 -0.15
Alkalinity -0.04 -0.04 -0.15 0.74 0.00 -0.18

TDS 0.66 0.02 0.33 0.21 0.04 0.41
NO2

 - 0.36 0.47 -0.44 0.24 -0.07 -0.11
F. Coli -0.36 0.75 0.01 -0.11 0.29 0.02
E. Coli 0.03 0.91 -0.03 -0.01 -0.07 -0.03

Eigenvalue 3.92 2.78 2.4 1.95 1.41 1.11
% of total variance 14.09 13.69 13.56 12.45 11.08 10.52

% of cumulative 14.09 27.22 41.34 53.78 64.87 75.39

Note: Values in bold are corresponded to absolute value of loading>0.70.

Table 3: Loadings of 18 parameters on significant VFs for the water quality 
dataset.
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Figure 5: Scores of the five VFs at nine monitoring sites.
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classified, and pollution sources of sampling sites were identified. The 
results obtained by hierarchical CA indicated that nine sampling sites 
were classified into three groups: group A (relative low pollution sites) 
contained Sites 1-3, group B (moderate pollution sites) included Sites 
4-8, and group C (relative high pollution sites) included Site 9 solely. 
Through PCA/FA, six latent factors were obtained, which explained 
75.39% of the total variance, and represented organic pollution, fecal 
pollution, biochemical reactions, nutrients, domestic sewage, and 
natural factors, respectively. In addition, the pollution sources of 
different sampling sites were analyzed according to the scores of six 
VFs. The results illustrated that Sites 1 and 2 were not affected greatly 
by pollution of nonpoint sources, Site 3 (Dazong Lake) was influenced 
by surrounding rain runoff, as well as ground water seepage, Sites 4 
and 5 were polluted by fecal pollution, Sites 6-8 were polluted by point 
and nonpoint sources from industrial activity, agriculture runoff, and 
domestic drainage, and Site 9 was severely polluted with untreated 
domestic discharge from nearby residents. Based on these results, the 
sewage systems near Site 9 should be modified and improved by local 
managers as quickly as possible. The results show that multivariate 
statistical techniques are useful for analyzing and interpreting complex 
water quality datasets, as well as identifying pollution sources for 
governments to make effective policies. In addition, these methods can 
be applied by river managers to support scientific strategies to improve 
drinking water quality.
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