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Introduction
Associative algebras with n-ary compositions in general and 

associative triple system in particular play important roles in Lie and 
Jordan theories, geometry, analysis. For instance, associative triple 
systems give rise to Jordan triple systems [1-3] and Jordan triple 
systems give rise to 3-graded Lie algebras through the Tists Kantor 
Koecher construction [4,5], from which most simple Lie algebras can 
be obtained. Jordan triple systems also give rise to Lie triple systems 
through the K. Meyberg construction [6,7]. On the other hand, Lie triple 
systems give rise to graded Lie algebras, which are exactly the kind of 
Lie algebras associated to symmetric spaces. In geometry and analysis, 
various types of Jordan triple systems are used in the classifications of 
different classes of symmetric spaces [2,8-10].

After some preparations, using the notion of T*-extention, we 
will show, in the first section, that there exist a symmetric associative 
triple systems which is not semisimple. This notion was introduced by 
Bordemann, who proved that every Jordan algebra of even dimension, 
which contains an isotropic ideal of dimension n/2, is a T*-extension 
of a Jordan algebra and every odd dimensional Jordan algebra is an 
ideal of codimension one of a T*-extension. Lin et al. extended this 
notion to Lie triple systems. We will show that the same theorem holds 
for associative triple systems. The proof in this case is different from 
the Jordan algebra case. It relies the construction of Lie triple systems 
associated to an associative one.

Definition 1

An assocaitive triple system is a vector space A over a field K with a 
trilinear multiplication {a,b,c} satisfying

{{a,b,c}d,e}={a,{b,c,d},e}={a,b{c,d,e}},

for any a,b,c,d,e∈A.

Definition 2

A derivation of an associative triple system A is a linear 
transformation D of A into A such that

D({a,b,c})={D(a),b,c}+{a,D(b),c}+{a,b,D(c)},∀a,b,c∈V

The set of all derivation of V is denoted by Der(A). The set 
Der(A) of derivations of A is a Lie algebra of linear transformations, 
we call it the derivation algebra of A. Further, if a,b∈A, the linear 
maps L(a,b) (resp.R(a,b)) defined on A by L(a,b)c=(a,b,c) (resp. 
R(a,b)c=(c,a,b)),∀c∈A, is a derivation of A. The linear maps L(a,b) 
(resp.R(a,b)) are called the left (resp.right) multiplications of A. 

,
( , ) = { ( , ); , }i i i ia bi i

L T T L a b a b A∈∑  is a subalgebra of Der(A), we call 

it we call it the inner derivation algebra of A, its element is called an 
inner derivation of A.

Definition 3

(1) A symmetric bilinear form B on an asoociative triple system A 
is called to be invariant if it is right and left invariant. That is

( ,{ , , }) ( ,{ , , }) ( ,{ , , }) ( ,{ , , }) = 0,a d c b b d c a c b a d d a b cω ω ω ω− + +

It was proved [11] that if B is a symmetric and right invariant 
bilinear form on A, then B is left invariant. Therefore, a symmetric 
bilinear form B is invariant if and only if it is right invariant.

(2) We say that (A,B) is a symmetric associative triple system if B 
is a non-degenerate symmetric invariant bilinear form on A. Here B 
is called a symmetric structure on A. A symmetric associative triple 
system (A,B) is said to be reducible (or B-reducible) if it admits an ideal 
J such that the restriction of B to J×J is non-degenerate. Otherwise, we 
will say (T,B) is irreducible.

(3)We say that (A,ω) is a symplectic associative triple system if ω 
is a non-degenerate skew-symmetric bilinear form on T such that the 
identity.

( ,{ , , }) ( ,{ , , }) ( ,{ , , }) ( ,{ , , }) = 0,a d c b b d c a c b a d d a b cω ω ω ω− + +

holds for any a,b,c,d∈A. Here B is called a symplectic structure on A.

Definition 4

An element f∈Hom(A,A) is called B-symmetric, (resp.B-
antisymmetric) if B(f(a),b)=B(a,f(b)), (resp.B(f(a),b)=-B(a,f(b)),∀a,b∈A. 
Denote by Homs(A,A) (resp.Homa(A,A) the subspace of B-symmetric 
(resp.B-antisymmetric) endomorphism of A.

Theorem 1: A symmetric associative triple system (A,B) admits 
a symplectic form ω, if and only if there exists a B-antisymmetric 
invertible derivation δ of A such that ω(a,b)=B((a),b),∀a,b∈A.

Proof. Since B and ω are two nondegenerate bilinear forms, there 
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( ) = ( ) .D X f D X f D+ −

  Then D  is an invertible derivation which is 
skew-symmetric with respect to B. Hence, the symmetric associative 
triple system (Tn,B) admits a symplectic structure.

Proposition 1: Let V be an associative triple system 
and Z(V)={aV;{a,b,c}=0,∀b,c∈V} be the center of V. Then, 
(Z(V))⊥=(V,V,V), where (V,V,V) is the sub-space of V spanned by the 
set {{a,b,c}; a,b,c∈V}.

Let a,b,c∈V and let xZ(V). Then, B({a,b,c},x)=B(a,{a,b,c})=0. So, 
{V,V,V}⊆(Z(V))⊥. Conversely, let y∈(V,V,V)⊥. Using the invariance of 
B we get, B((y,b,a),c)=0, for c∈V. Thus, (y,b,a)=0, for a,b∈V because 
B is nondegenerate. Hence, y∈Z(V). Consequently, (Z(V))⊥={V,V,V}.

Definition 5

Let (V,(,)) be an associative triple system. We define the descending 
series (Vn)n∈N by V0=V and Vn+1=(Vn,Vn,V),∀n∈N and the ascending 
series (V(n))n∈N by V(0)=A and V(n+1)=(V(n),V(n),V(n)),∀nN. If there exists 
n∈N such that Vn={0}(resp.V(n)={0}), then A is called solvable (resp. 
nilpotent).

Definition 6

Let V be an associative triple system and B be an invariant scalar 
product on V.

1. An ideal U of V is a subspace of A which satisfies 
(U,V,V)+(V,U,V)⊆U.

2. An ideal U of V is said to be:

(a) Abelian if {U,U,U}={0}.

(b) Solvable (resp. nipotent) if it is solvable (resp. nilpotent) as a 
asoociative triple system.

(c) Nondegenerate (resp. degenerate) if B|U×U is nondegenerate 
(resp. degenerate).

3. The largest solvable ideal of V is called the radical of V and 
denoted Rad(V).

4. The asoociative triple system (V,B) is called.

(a) Semi-simple if it has no non trivial solvable ideal. That is 
Rad(V)={0}.

(b) B-irreducible, if V contains no non-trivial nondegenerate ideal.

The following lemma is straightforward.

Lemma 1: Let (V,B) be an associative triple system and U be an 
ideal of V. Then,

U⊥={x∈V,B(x,y)=0 ∀y∈A} is an ideal of V.

If U is nondegenerate, then A=U⊕U⊥ and U⊥ is also nondegenerate.

Lemma 2: Let (V,B) be an associative triple system. Then, 

=1= r
ii⊕   where r∈N and such that for i∈{1,…,r},

Vi is a nondegenerate ideal of V.

Vi is B-irreducible as an associative triple system.

For i≠j and (x,y)∈Vi×Vj, we have B(x,y)=0.

We precede by induction on n=dim(V). If n=1, then the assertion 
is true. Suppose that every asoociative triple system of dimension less 
than n satisfies the proposition. Let (V,B) be an associative triple system 
of dimension n+1. If V does not contain any non trivial nondegenerate 

exists δ∈Hom(A,A), such that ω(a,b)=B((a),b),a,b∈A. Further, since ω 
is symplectic, then;

( ({ , , }), ) = ({ ( ), , )}, ) ({ , ( ), )}, ) ({ , , ( ))}, ), , , , .B a b c d B a b c d B a b c d B a b c d a b c d Aδ δ δ δ+ + ∀ ∈

The fact that B is nondegenerate implies that  is a derivation of A. 
Conversely, if δ is a B-antisymmetric invertible derivation of A, then it is 
clear that the bilinear form ω:A×AK defined by: ω(a,b)=B((a),b),a,b∈A, 
is a symplectic form of A.

Theorem 2: Let (A,{,,}) be a asoociative triple system and Θ: 
A×A×A→A* be a trilinear map. Let ( ) =T A A A∗ ∗

Θ ⊕  on which it is defined 
a symmetric bilinear distributive triple product

{ , , } = { , , } ( , , ) { , , } { , , } { , , },Ja f b g c h a b c a b c f b c a g c a b h+ + + + Θ + + +     (1)

For all a,b,c∈A and f,g,h∈A*. With,

{ , , }( ) = ({ , , }); { , , }( ) = ({ , , }) { , , }( ) = ({ , , }),f b c d f d c b a g c d g a d c and a b h d h b a d

is an asoociative triple system if and only if , Θ satisfies
( , ,{ , , }) { , , ( , , )} = ({ , , }, , )

{ ( , , ), , } = { , ( , , ), } ( ,{ , , ), ),
a b c t r a b c t r a b c t r
a b c t r a b c t r a b c t r

Θ + Θ Θ +
Θ Θ +Θ

               (2)

∀a,b,c,t,r∈A. Furthermore, the bilinear form B defined on ( )T A∗
Θ  by:

( , ) = ( ) ( ), , , ,B a f b g g a f b a b D f g D∗+ + + ∀ ∈ ∈

is dn invdridnt scalar product on ( )T A∗
Θ  if and only if Θ satisfies

( , , )( ) = ( , , )( ), , , , .a b c d b a d c a b c d AΘ Θ ∀ ∈                  (3)

The constructed symmetric asoocidtive triple system ( ( ), )T A B∗
Θ  is 

called the T ∗
Θ

-extension of A by means of Θ.

Proof. Computation [12,13].

Theorem 3: Let A be a associative triple system which admits an 
invertible derivation D and a trilinear map : A×A×AA* satisfying (2) and 
(3). Then the T*-extension ( )T A∗

Θ
of A admits a symplectic structure.

Let ( ( ), ( ))D Hom T A T A∗ ∗
Θ Θ∈  defined by

*( ) := ( ) , .D a f D x f D a A and f A+ − ∀ ∈ ∈



( ( ), ) = ( ) ( ) = ( , ( )).B D a f b g f b g a B a f D b g+ + − + − + +   Thus D  is an 
invertible B-skew symmetric derivation of ( )T A∗

Θ . We get the result 
by Theorem 0.1.

Example 1: Let A be an associatif triple system and n∈N;n>1. 
Consider the non-unitary associative algebra Fn=tK[t]/tnK[t]. Define 
the bracket on the vector space An=T⊗Fn by

{ , , } = { , , } ,p q r p q rx t y t z t x y z t + +⊗ ⊗ ⊗ ⊗

where , ,x y z A∈  and , , {0}p q r∈ ≠ . Then An is a nilpotent 
associative triple system. The endomorphism D of An defined by

( ) = ( )p pD x t p x t⊗ ⊗

for any xA and p{1,…,n-1} is an invertible derivation of An. Define the 
product on the vector space *= ( )n n nT T T⊕  by

{ , , } = { , , } { , , } { , , } { , , },An
x f y g z h x y z f y z x g z x y h+ + + + + +

With,

{ , , }( ) = ({ , , }); { , , }( ) = ({ , , }) { , , }( ) = ({ , , }),f y z a f a z y x g z a g x a z and x y h a h y x a

for all , , , , , .n nx y z a A and f g h A ∗∈ ∈

Define the bilinear form on Tn by B(X+f,Y+g)=f(Y)+g(X). Then 
( , )nT B  is a symmetric associative triple system. Define D  on 

nT  by 
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ideal, then the assertion is true for r=1. If not, let I be a non trivial 
nondegenerate ideal of V. By the Lemma 1, V=I⊕I⊥. The result follows 
by applying the induction to I and I⊥. W.

Proposition 2: Let (V,B) be a semi-simple asoociative triple system 
and consider the decomposition 

=1= r
ii⊕   of V as in the Lemma 2.

If I is a simple ideal of V, then there exists i0∈{1,…,r} such that 

0
=i  .

For i∈{1,…,r}, Vi is simple.

(i) Let I be a non-trivial simple ideal of V. Assume that for all 
i∈{1,…,r} we have I∩Vi={0}. Since =1{ , , } ( ) = 0r

ii⊆ ∩⊕     . Then, 
{I,I,I}=0 and I is solvable. Hence, there exists i0∈{1,…,r} such that 

0
{0}i∩ ≠  . Since 

0i
∩   is an ideal of I and I is simple, then 

0
=i∩   . So, 

0i
⊆  . The fact that 

0i
  is B-irreducible and I 

is nondegenerate, imps that 
0

= i  . (ii) Suppose that there exists 
i∈{1,…,r} such that Vi is not simple. Then, without lost of generality, 
we may write =1 = 1= ( ) ( )s r

i ii i s+⊕⊕ ⊕    where for 1≤is, Vi is simple and 
Vi is not simple for s+1 ≤ I  r. Since V is semi-simple, then we can 
consider the decomposition 

=1= l
ii⊕   of V into the direct sum of its 

simple ideals. The assertion (i) imps that s=l=r, W.

The previous Proposition shows that, in the case of semisimples 
triples systems, the decompsition into the direct sum of orthogonal 
nondegenerate ideals coincides with the decomposition into a direct 
sum of simple ideals.

The following theorem presents a process of construction of a 
symmetric asoociative triple systems.

Remark 1: It is clear that J* is an abelian ideal of wT J∗ . Thus, wT J∗  
is not semi-simple. Moreover, if J is not nilpotent, then wT J∗  is not 
nilpotent too. Consequently, the family of a symmetric asoociative 
triple systems contains strictly the of semi-simple asoociative triple 
systems and the symmetric nilpotent asoociative triple systems.

Theorem 4: Let (J,B) be a a symmetric asoociative triple system of 
dimension n. Then, (J,B) is isometric to a T*-extension *

1 1( ( ), )wT BJ  if 
and only if n is even and J contains an isotropic ideal I of dimension n/2.

Let I be an isotropic ideal of J of dimension n/2. Since B is 
nondegenerate, the ideal I is abelian. Let us consider V an isotropic 
complementary to I. Then, J=I⊕V and V⊥=V. Let x,y,w∈V. Put 
{x,y,z}=(x,y,z)+β(x,y,z) where α(x,y,z)∈I and β(x,y,z)∈V. It is easy to 
check that (V,β) is a asoociative triple system.

Now, since B is nondegenerate, the linear map v: I→V*;i→B(I,.) 
is invertible. Furthermore, dim(I)=n/2=dim(V*). Thus, v is an 
isomorphism of vector spaces. We consider the T*-extension 

* *( ) =wT ⊕    of V by means of the trilinear map ω:V × V × V→V* 
defined by w(x,y,z)=v((x,y,z)),x,y,z∈V. Moreover, let us consider 

*: = ; ( )i x x iνΩ → + +⊕ ⊕    J .

Using the invariance of the bilinear form B on J, we get for all 
x,y,z∈V,i∈I,

( )({ , , }) = ( ,{ , , }) = ({ , , }, ) = ({ , , })( ).i x y z B i x y z B i z y x i z y xν ν

Similarly,

( )({ , , }) = ({ , , })( ) = ({ , , })( ).i x y z z i x y y x i zν ν ν

Consequently, if Ω:J=IV→VV* défined by ( ), ,i x x i i xν+ + ∀ ∈ ∈    
then, for X=i+x,Y=j+y,Z=k+z∈J=IV, we get

({ , , }) = ( , , ) ( ( , , )) ({ , , })
({ , , }) ({ , , })1,6

= ( , , ) ( , , ) ( )({ , ,.}) ( )({., , })
( )({ ,., })1,6 = { ( ), ( ), ( )}.

X Y Z x y z x y z x y k
i y z x j z cm

x y z w x y z k y x i z y
j z x cm X Y Z

β ν α ν
ν ν
β ν ν

ν

Ω ⊕ + +
+
⊕ + + +

Ω Ω Ω

Thus, Ω is an isomorphism of asoociative triple systems W.

Theorem 5: Let (J,B) be a a symmetric asoociative triple system of 
dimension n. If n is odd,and I is an isotropic ideal of J of dimension 
[n/2]. Then, J is isomorphic to a nondegenerate ideal of codimension 1 
in a T*-extension of the asoociative triple system J/I.

Let I be an isotropic ideal of J of dimension [n/2] and let L(J) be 
the asoociative triple system generated by the left, right and middle 
multiplications of J. Since B is invariant on J. By Lemma of [?], φ(I⊥)⊆I, 
for all φ∈L(J). Consequently,

{ , , } { , , } { , , } .⊥ ⊥ ⊥+ + ⊆   J J J J J J

So,

({ , , } { , , } { , , }) .⊥ ⊥ ⊥ ⊥ ⊥⊆ + +   J J J J J J

Since B is invariant and nondegenerate, then 
{J,J,I⊥}+{J,I⊥,J}+{I⊥,J,J}={0}. Therefore, I⊥ is abelian. Now, let us consider 
the one dimensional abelian asoociative triple system Kc endowed with 
the bilinear form Bc: Kc × Kc → K defined by Bc(c,c)=1. Let J1=J⊕Kc be 
the asoociative triple system endowed with the triple product given by:

{ , , } = { , , }, , , , , , .x c y c z c x y z x y zα γ λ α γ λ+ + + ∀ ∈ ∈J

We define on J1 the bilinear form B1 by:

1| 1 1 1= , ( , ) = 1, ( , ) = ( , ) = 0.B B B c c and B c B c
×J J

J J

It is clear that (J1,B1) is a pseudo Euclidean asoociative triple system. 
Besides, J1 is a nondegenerate ideal of codimension 1 of J1. Let d∈I⊥ 
such that B(d,d)=-1 and consider I1=IKe, where e=c+d. It is easy to see 
that I1 is an ideal of J1. In addition,

1 1( , ) = ( , ) ( , ) = 0, ( , ) = ( , ) ( , ) = 0, .cB e e B d d B c c and B x e B x d B x c x+ + ∀ ∈ 

So, I1 is isotropic and, 1
1( ) =

2
ndim +

 . Since dimension of J1 is 

even, then the theorem 4 imps that J1 is isomorphic to a T*-extension of 
the asoociative triple system J1/I1.

Cosequently, J1/I1 is isomorphic to J/I, W.
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