
Volume 5 • Issue 3 •1000267J Pulm Respir Med
ISSN: 2161-105X JPRM, an open access journal

Dahlin, et al., J Pulm Respir Med 2015, 5:3 
DOI: 10.4172/2161-105X.1000267

Research Article Open Access

Asthma Metabolomics: The Missing Step for Translating Bench Work into 
the Clinic
Amber Dahlin#, Michael J. McGeachie# and Jessica A. Lasky-Su*
Department of Medicine, Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
#These authors contributed equally to this manuscript.

Abstract

Metabolite profiling, the systematic analysis of all metabolites, has been used successfully to identify new 
biomarkers for several complex diseases. In this review we describe how metabolomics data are generated, review 
the existing literature using metabolomics with asthma and related phenotypes, and discuss the need for more 
comprehensive asthma metabolomics research. 
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Introduction
Asthma is a widespread disease with over 23 million diagnosed 

cases in the United States, and is the most common health-related 
cause of lost school and work days [1], constituting a large public health 
concern. Patient genetics is a major driver in asthma etiology [2,3] and 
although multiple molecular determinants have been identified [4], the 
biological mechanisms by which these determinants impact disease is 
not known. Furthermore, it is likely that diverse genetic profiles among 
patients confer different asthma treatment responses. The metabolome 
constitutes the entire complement of low molecular weight molecules 
in a biological sample from an individual, where the sample may 
include diverse biospecimens such as plasma [5], serum [6-8], salivia 
[9], exhaled breath condensate [10,11] and urine [12]. Metabolomics, 
defined as the systematic analysis of all metabolites, provides an 
opportunity to connect genetic and molecular mechanisms with disease 
outcomes, as fluctuations in metabolite concentrations are likely to 
directly contribute to asthma pathology. Therefore, metabolomics 
offers a unique opportunity to link molecular determinants with 
asthma diagnoses and related outcomes. To date, metabolomics studies 
have been limited in size and scope for asthma [13,14], making the 
metabolome an untapped resource with the potential to transform 
the current understanding of asthma pathogenesis, and to more 
effectively personalize treatment approaches. In this review, we review 
key concepts in the generation and analysis of metabolomics data, 
summarize the current state of asthma metabolomics, and explain the 
potential for asthma pharmacometabolomics, and, finally, advocate for 
the increasing need for asthma metabolomics studies.

Metabolomics: A Missing but Crucial ‘omic’ to Identify 
Asthma Disease Pathways 

Current technologies enable the assessment of a large number of 
metabolites that result from environmental, genomic, transcriptomic, 
and proteomic variability. As such, metabolomics data provides the 
most integrated profile of biological status reflect the complex interplay 
of genetic and environmental interactions [15,16]. Metabolomic data 
therefore are amenable to study disease predisposition, diagnosis, and 
progression. Endogenous metabolites span a variety of compound 
classes, with significant differences in size and polarity, across 
wide concentration ranges. Mass spectrometry (MS) coupled with 
separation techniques including liquid chromatography (LC) is 
currently the most advanced technology available [17,18]. It can be 
used both in a non-targeted, pattern-recognition manner, or a targeted 
manner, for confirmation. In most complex diseases, like asthma, 
the perturbations involve activation of multiple pathways. By using 

clinical, environmental, genetic, and genomic data in conjunction with 
descriptive metabolic profiles obtained by MS, it is possible to describe 
patterns of changes and biomarkers that discriminate between states of 
asthma severity and asthmatic cases and controls [19,20]. Investigators 
have already successfully identified biomarkers in type 2 diabetes, 
Alzheimer’s disease, and cardiovascular disease [18,21-23] that have led 
to the discovery of novel disease pathways. In contrast to those diseases, 
there has been limited work in asthma metabolomics to date. 

Rapid technological advances have enabled the generation of 
vast ‘omics’ datasets comprising millions of biological measurements 
on genomic, transcriptomic, proteomic, and metabolomic data. The 
emerging field of systems biology uses these data to understand the 
complex interactions that result in the development of a disease. For a 
complex disease such as asthma, significant advances have been made 
in identifying genetic determinants of the disease [24-26]. While earlier 
linkage and candidate gene studies identified a small number of genetic 
variants for asthma [27-37], genome-wide association studies (GWAS) 
have confirmed a number of asthma loci including ORMDL3/GSDMB, 
HLA-DQ1, IL1RL1, and IL33, among others [4,38-42]. Despite the 
identification of these genetic contributors, little is known regarding 
how these variants impact asthma [43]. Furthermore, both genetic 
heterogeneity and host environment affect the diversity of biological 
pathways underlying diverse asthma phenotypes. Therefore, identifying 
the mechanisms by which genomic variations interact with the 
environment and lead to perturbations in biological pathways resulting 
in a disease state is crucial for both understanding and treating asthma. 

Metabolomics, the systematic analysis of all metabolites (including 
sugars, amino acids, organic acids, nucleotides, and lipids), offers 
a snapshot of the integrated profile of a biological state. Compared 
with proteomic or genomic profiling, comprehensive metabolite 
profiling represents more proximate measures of underlying genetic 
and environmental exposures contributing to disease. Because the 
perturbations in biological pathways that occur with disease states 
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produce fluctuations in metabolite levels, metabolomic profiles can 
be more directly linked to a disease outcome, such as asthma [15,16]. 
Therefore, a hypothetical complete metabolomic profile would provide 
the most informative assessment of biological status, reflecting the 
net effect of genetic and environmental interactions [15,16], thereby 
making this approach a promising strategy to examine asthma 
pathogenesis [44]. 

The Generation and Analysis of Metabolomic Data
For metabolomic profiling, the metabolites are first extracted 

from a biospecimen using separation and quantification techniques. 
The analytical tools most commonly used in metabolomics include 
nuclear magnetic resonance spectroscopy (NMR), liquid and 
gas chromatography (LC, GC), and mass spectrometry (MS). A 
comprehensive measurement of the metabolome continues to 
be an analytical challenge because of the differences in physical 
properties among compounds that constitute the metabolome. For 
example, differences in polarity among metabolites require different 
extraction procedures for the preparation of analytical samples. As 
a result, multiple procedures must be combined in order to generate 
comprehensive measures of the existing metabolites. For metabolite 
quantitation, two main strategies exist: targeted and untargeted 
approaches. Targeted metabolomics approaches are applicable for 
hypothesis-driven studies, where a predefined set of select metabolites 
is quantified. In contrast, untargeted metabolomics approaches 
measure all endogenous metabolic signals in a biological sample, which 
results in a larger range of metabolites, but has reduced sensitivity to 
detect individual metabolites, or identify unknown metabolites. Here, 
we summarize commonly sampled biofluids, and routine analytical 
methods for analyzing metabolomics data.

Biofluids and sampling methods

	 Metabolomics data can be generated using a vast array of 
biologic specimens. While blood plasma and serum [8,17] are most 
common, metabolomics data is also being generated using urine [14], 
stool [45], exhaled breath condensate [11], and bronchoalveolar lavage 
(BAL) fluid [46].

Common analytic methods for metabolomics data

Several common metabolomics methods have been described in 
the literature that can also be applied to asthma metabolomics data. As 
with other ‘omics’ studies, in metabolomics, there are often many more 
variables to measure than there are samples available. To circumvent 
this issue, and to identify metabolites that are predictors of asthma or 
related outcomes, multivariate and machine-learning techniques can 
be applied. Standard parametric statistical methods such as regression 
analysis are inapplicable when the number of samples is far less than 
the number of parameters, making data-reducing methods such as 
principal component analysis [47], discriminant analysis, Gaussian 
graphical models, and Bayesian networks, attractive options. We review 
these common approaches below.

Principal component analysis (PCA) is one of the most common 
techniques used for analyzing metabolomics data [48]. The popularity 
of PCA in metabolomics is due to the fact that it is a simple, non-
parametric method that can project the metabolites into lower 
dimensional space, revealing inherent data structure, and greatly 
reducing the number of variables in the original data. In this case, 
each principal component is a summary of metabolite contributions 
that are orthogonal from the other principal components and can be 
used as independent variables; together these variables summarize the 

overall metabolic state of the individual samples. This is an effective 
way to summarize the contribution of many correlated metabolites to 
a phenotype; however, the principal components themselves are often 
difficult to interpret biologically.

Partial least square discriminant analysis (PLS-DA) is similar in 
some respects to PCA in that both reduce the dimensions of the analysis 
by collapsing correlated variables into fewer, uncorrelated variables. 
PLS-DA first transforms the metabolites into uncorrelated variables. 
These uncorrelated variables are then included in a regression analysis 
with the case/control status as the dependent variable of interest, and 
the set of metabolites that most accurately predicts the case/control 
status is selected. This approach identifies a metabolic signature for the 
condition in question. PLS-DA has been used to discriminate patients 
with and without various diseases, including coronary heart disease 
[49], cardiovascular disease [50], schizophrenia [7], inflammatory 
bowel disease [51], diabetes [21,52], low birth weight [53], ovarian 
cancer [54,55], and multiple sclerosis [56]. 

For broad-based, untargeted metabolomic profiling approaches, 
reconstructing metabolic pathways from the observed data is an 
attractive endeavor that also facilitates the identification of pathological 
disruptions or phenotypic differences between cases and controls. 
Gaussian graphical models (GGMs) use partial Pearson correlation 
of residuals for each pair of metabolites and identifies significantly 
associated pairs to identify molecules that are correlated after other 
effects are conditioned away, ideally resulting in connections that are 
representative of direct interactions [57]. In this manner, GGMs have 
been used to identify networks of interacting metabolites [58].

In some applications, it is desirable to obtain a metabolomic 
signature that predicts case/control status or differentiates cases from 
controls, for which a Bayesian network is appropriate [59]. A Bayesian 
network (BN) is a data structure that encodes conditional probability 
distributions among variables of interest by using a graph composed 
of nodes and directed edges [60]. Bayesian networks are an attractive 
modeling methodology since they can model complex interactions 
between many variables of interest [61], and are particularly appropriate 
in metabolomics where the number of predictors is relatively low 
and the emphasis is more on identifying nonlinear and conditional 
interactions that may have large effect sizes than on filtering through 
many noisy variables. These attributes have led to successfully replicated 
BN prediction from metabolomic profiling [62]. In combination with 
metabolomics, BNs are ideal for incorporating integrative ‘omics’ data, 
including gene, SNP, and methylation data [57]. Furthermore, as the 
cost of metabolomic profiling decreases, it is possible that dynamic 
Bayesian networks will be used in time-series metabolomic datasets 
to reconstruct concentration changes over time, just as they have been 
effective in the reconstruction of gene regulatory networks from time 
series gene expression experiments [63].

The application of these analytic approaches to investigate a 
comprehensive panel of metabolites in a large number of samples from 
well-characterized asthma cohorts has the potential to greatly inform 
asthma pathogenesis. 

Review of Metabolomics Studies of Asthma 

Asthma diagnosis and severity 

As of early 2015, ten asthma metabolomics studies have been 
published, all of which focused on asthma diagnosis, control, and/
or severity [11-14,64-69]. Recent studies focused on investigating 
the potential of metabolomics profiling of urine, serum and EBC to 
differentiate asthmatic from non-asthmatic subjects. Gahleitner et al. 
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to vitamin D, retinoic acid, TCA metabolism, hypoxic and nitrative 
stress, immune reaction and inflammation, all of which are biologically 
plausible metabolites for asthma. 

Although encouraging, the studies to date are limited in size, 
complexity of phenotype(s), number of metabolites, and, in general, 
lack validation. Therefore, the use of large, well-characterized asthmatic 
cohorts that can validate initial findings using an independent 
population(s) is necessary. Additionally, leveraging longitudinal data 
on asthma severity together with metabolic profiling can establish 
temporality, thereby further informing prediction and enhancing 
clinical relevance.

Pathway-based asthma metabolomics

The heterogeneity in the biological pathways that underlie asthma 
development and progression has different implications for asthma 
treatment. Asthma is increasingly recognized as an inflammatory 
mediator-driven process. Leukotrienes and prostaglandins, two 
families of pro-inflammatory mediators that arise via arachidonic 
acid metabolism, have been implicated in the inflammatory cascade 
occurring in asthmatic airways [71,72]. Therapeutic agents such 
as the leukotriene pathway inhibitors montelukast, zafirlukast, and 
zileuton have become established medications for reducing asthma 
symptom severity, as they are known to modulate important cellular 
and physiological activities related to asthma symptoms, including 
neutrophil activation, chemotaxis, eosinophil migration and smooth 
muscle contraction [73,74]. These medications exert their leukotriene 
reducing effects through blocking leukotriene production (zileuton) 
or by interfering with cellular leukotriene responses via inhibition of 
leukotriene receptor binding (e.g. montelukast). However, the clinical 
response to anti-leukotriene medications is highly variable, but 
repeatable between individuals, suggesting that biological variation 
plays an important role in individual response [75-77]. Variation in 
multiple genes involved in the leukotriene pathway has been implicated 
in heterogeneous responses to anti-leukotriene medications, and 
increased leukotriene production is directly related to asthma symptom 
severity. Therefore, identifying specific metabolites that reflect the 
activity of the leukotriene pathway may be useful in guiding pathway-
specific treatment in asthma. In addition to the leukotriene pathway, 
a wide body of literature exists to support the role of tryptophan 
metabolism in the development and treatment of asthma. A partial 
blockade in tryptophan metabolism has been identified in some 
asthmatic individuals [78]. In addition, a recent study suggests that 
tryptophan hydroxylase 1, an enzyme involved in the conversion of 
tryptophan to serotonin [79], represents a novel therapeutic target 
for asthma, as it markedly reduces allergic airway inflammation [80]. 
Serotonin has also been identified as a potent bronchoconstrictor 
associated with asthma; blockade of serotonin reuptake results in 
increased pulmonary function correlated with increased free serotonin 
plasma levels [81,82]. These examples illustrate the advantage that 
identifying pathway specific metabolites may help in more effectively 
connecting underlying genetics to pathway specific markers, to more 
effectively inform asthma treatment. 

Limitations

Published studies on the metabolomics of asthma are limited in 
number and scope. These studies report good predictive accuracy in 
differentiating asthmatics from control individuals; however, they 
are limited in size, complexity of phenotype(s), and the number of 
metabolites investigated. In addition, all of these studies lack replication, 

identified a panel of eight candidate asthma-specific, volatile organic 
compounds from EBC that could differentiate asthmatic (N=11) vs. 
healthy control (N=12) samples using 2D-PCA [64]. More recently, 
Motta et al. applied PLS-DA to NMR-based metabolomics data from 
35 asthmatic and 35 healthy EBC samples, conducted a subsequent 
multivariate statistical data analysis using projection methods to 
correctly differentiate asthmatics from healthy controls, and validated 
their model in 20 additional asthmatics and 20 controls [10]. Similarly, 
Jung et al. applied an NMR-based profiling approach of sera to 
distinguish 39 asthmatics and 26 controls, and identified metabolites 
related to hypermethylation, hypoxia response and immune responses 
[13]. 

While these studies demonstrated the applicability of metabolomics 
for noninvasive asthma diagnostics and therapeutic monitoring, others 
have revealed its potential in differentiating asthmatic phenotypes, 
and providing mechanistic insight. Furthermore, these studies have 
also applied metabolomics profiles to distinguish individuals with 
well-controlled asthma from those with poorly controlled asthma. An 
NMR-based approach combined with multivariate modeling produced 
a discriminatory model that not only successfully differentiated 
asthmatics from healthy subjects but also could classify asthmatic 
sub-phenotypes based on sputum eosinophilia, neutrophilia, asthma 
control and inhaled corticosteroid use [70]. Using an untargeted 
LC-MS approach to profile urine samples from 41 asthmatics and 
12 healthy control subjects, Mattarucchi et al. applied multivariate 
models to distinguish metabolic profiles that could characterize 
asthma from non-asthmatics, and asthma control [14]. In particular, 
the model differentiated poor vs. well controlled asthma in patients 
taking SABA (N=14), and poor vs. well controlled asthma in patients 
using a daily controller (N=11) [14]. In addition, the authors showed 
that metabolites could have an underlying role in the inflammatory 
mechanisms contributing to asthma severity. In general, these studies 
had good predictive accuracy (>80%) in differentiating asthmatics 
verses controls; however, due to the small sample sizes, statistical 
power was limited in all studies. Furthermore, only one of these studies 
included an independent replication cohort to validate their initial 
findings.

Metabolomics studies of asthma severity have focused on 
differentiating severe from non-severe asthma, identifying biomarkers 
that can predict asthma exacerbations, and profiling metabolites 
associated with oxidative stress resulting from exacerbations. Carraro 
et al. profiled EBC samples from 31 non-severe asthmatic children, 11 
children with severe asthma, and 15 healthy control children and found 
that metabolites related to retinoic acid, adenosine and vitamin D could 
distinguish between severe vs. non-severe asthma, and severe asthma 
vs. healthy controls [68]. Loureiro et al. profiled urinary metabolic 
changes related to asthma exacerbation in a cohort of 10 adult 
asthmatics, and conducted PCA-based analyses of metabolites obtained 
by GC × GC-TOFMS and NMR based methods, finding that urinary 
metabolomic profiles were markedly altered during exacerbations, with 
increased levels of aldehyde and alkane metabolites in particular [65]. 
As alkanes and aldehydes are products of oxidative metabolism and 
increased oxidative states, these results implicate greater oxidative stress 
during exacerbation vs. stable asthma. Saude et al. also identified five 
metabolites in the TCA cycle with a higher abundance in exacerbators 
[12]. This is consistent with the histamine release that occurs during mast 
cell activation in asthma exacerbations. Furthermore, Voraphani et al. 
identified a novel metabolome driving nitrative stress in human airway 
cells that was associated with severe refractory asthma [66]. Together, 
these findings and others are promising, identifying metabolites related 



Volume 5 • Issue 3 •1000267J Pulm Respir Med
ISSN: 2161-105X JPRM, an open access journal

Citation: Dahlin A, McGeachie MJ, Lasky-Su JA (2015) Asthma Metabolomics: The Missing Step for Translating Bench Work into the Clinic. J Pulm 
Respir Med 5: 267. doi:10.4172/2161-105X.1000267

Page 4 of 6

which is essential when both the sample size and number of metabolites 
evaluated are limited in the initial analysis. The use of large, well-
characterized asthmatic cohorts for both discovering and validating 
asthma metabolomics studies is crucial, and is yet to be performed. 

Clinical pharmacometabolomics-the future promise for 
asthma clinical care 

The goal of pharmacogenomics is to reliably predict individual 
variation in drug responses in order to improve therapeutic outcomes 
for patients. However, due to the complexity of drug actions, which 
are mediated by diverse metabolic and pharmacological pathways, 
pharmacogenomic investigations have only reliably identified 
genetic variants with large effect sizes, which represent a minority 
of potential pharmacogenetic variants. To clarify this heterogeneity 
in patient drug responses, investigating the perturbations in the 
metabolic pathways of “good” and “poor” drug responders has been 
an emerging focus of personalized medicine. Using metabolomics 
to inform pharmacogenomic investigations, also known as 
“pharmacometabolomics”, assists in efforts to predict individual 
variation in drug response phenotypes, leading to the identification of 
novel diagnostic markers for drug responses in addition to clarifying the 
mechanisms underlying adverse drug events. Pharmacometabolomics 
has been applied to investigate multiple complex diseases; however, 
pharmacometabolomic studies are presently lacking for asthma. 
Despite this, the performance of such studies has the potential inform 
the current treatment of asthma. Below, we discuss the emerging 
application of pharmacometabolomics in asthma. 

In a recent study that represents one of the first, if not the foremost, 
asthma pharmacometabolomics studies to date, we sought to identify 
novel predictors of asthma control based on albuterol inhaler use [69]. 
First, we generated lipidomic data from plasma samples obtained from a 
case-control cohort with poorly controlled and well-controlled asthma, 
using liquid chromatography tandem mass spectrometry (LC-MS). The 
outcome of interest was a binary indicator of asthma control defined by 
the use of albuterol inhalers in the preceding week. We then integrated 
metabolomic data with genotype, expression, and methylation data 
from this cohort to identify genomic and molecular indicators of 
asthma control. A Conditional Gaussian Bayesian Network (CGBN) 
was generated using the strongest predictors from each of these 
analyses. The CGBN model, based on four SNPs and two metabolites 
(including sphingosine-1-phosphate (S1P) and mono-HETE), could 
predict asthma control with an AUC of 95%. Integrative pathway 
analysis (ORA) of the integrated data identified 17 pathways related to 
cellular immune response, interferon signaling and cytokine-related 
signaling, for which six genes and three metabolites (arachidonic acid, 
prostaglandin E2 and S1P), were enriched by asthma control phenotype. 
Of these predictors, S1P was identified as a top metabolite by both 
the CGBN model and ORA. Through an integrative approach that 
applies predictive network modeling and biological pathway analysis, 
we implicate altered metabolic pathways related to sphingolipid 
metabolism in a cohort with poorly controlled asthma. These results 
provide deeper insight into the pathophysiology of asthma control.

Through combining metabolomics and pharmacogenomics, 
significant progress can be made toward understanding the mechanisms 
of drug resistance and drug-associated adverse events, identifying 
promising therapeutic biomarkers, and improving therapeutic 
prediction and outcomes for patients. While pharmacometabolomics 
has yielded substantial progress in the pursuit of therapeutic 
interventions for several complex diseases, including cardiovascular 
diseases, cancer, and schizophrenia, similar recent progress for 

asthma is comparatively lacking. This sparseness of data reflects the 
dearth of both metabolomic and pharmacogenomic studies of asthma 
to date, and underscores an urgent need for robust, well-designed 
pharmacometabolomic investigations in asthmatic cohorts.

Conclusion
In this commentary, we provide a brief summary of metabolomics 

as a field of study, and discuss how this field has the potential to impact 
our current understanding of asthma pathogenesis. Herein, we defined 
metabolomics and summarized how metabolomics data are generated, 
reviewed the basic analytical strategies for metabolomics data, defined 
pharmacometabolomics, and discussed recent advances. Most 
importantly, we emphasized the need for more comprehensive asthma 
metabolomics studies, and the potential that these data may have on 
improving our understanding and treatment of the disease. 
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