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Introduction
In this paper we are concerned with the asymptotic behavior of the 

non-oscillatory solutions of second order integro-dynamic equation on 
time-scale of the form

0
( ( ) ( )) ( , ) ( , ( )) 0∆ ∆ + ∆ =∫

t
a t x t k t s F s x s s            (1.1)

We take ⊆T R  to be an arbitrary time-scale with 0∈T  and  
= ∞SupT .

 Whenever, we write  ≥t s , we mean [ , )∈ ∞ ∩t s T
 We assume throughout that:	

i) ,: →a T R  and : × →k T T R  are rd-continuous and ( ) 0>a t   and  

( , ) 0≥k t s  for ≥t s   and  
0

0
0

sup ( , ) : ;
≥

∆ = < ∞∫
t

t t
k t s s k               (1.2)

ii) : × →F T R R  is continuous and assume that
there exist 1 2, : × →f f T R R  are continuous such that  

1 2( , ) ( , ) ( , ) 0;= − ≥F t x f t x f t x for t

(iii) there exist constants β and γ which are the ratios of positive
odd integers and ( ) ( , (0, )), 1, 2∈ ∞ =i rdp t C T i  such that

1 1 2 2( , ) ( ) ( , ) ( ) 0 0,β γ≥ ≤ > ≥f t x p t x and f t x p t x for x and t

1 1 2 2( , ) ( ) ( , ) ( ) 0 0,β γ≥ ≤ < ≥f t x p t x and f t x p t x for x and t

By solutions of equation (1.1) we mean a delta- differentiable 
function defined on T that is nontrivial in a neighborhood of ∞ . A 
solution x of equation (1.1) is said to be oscillatory if for every  1 0≥t  

0 0≥t we have inf t ≥ t1 x(t)<0<sup t ≥ t1 x(t) and non-oscillatory 
otherwise. 

With respect to dynamic equations on time-scales, it is a fairly new 
topic and for general basic ideas and background, we refer the reader 
to [1].

Oscillation and non-oscillation results for integral equations of 
Volterra-type are scant and only a few references exist on this subject. 
Related studies can be found in [2-5]. To the best of our knowledge, 
there appear to be no such results on asymptotic behavior of non-
oscillatory solutions of equations (1.1). Therefore; the main goal of this 
paper is to establish some new criteria for the asymptotic behavior of 
non-oscillatory solutions of equation (1.1) and other related equations. 
Also we provide some numerical examples to illustrate the obtained 
results when T=R.

Main Results
We shall employ the following lemma.

Lemma 4.1: If X and Y are nonnegative [6], then

1( 1) 0, 1λ λ λλ λ λ−+ − − ≥ >X Y XY
and

 1(1 ) 0, 1λ λ λλ λ λ−− − − ≤ <X Y XY

where equality hold if and only if X = Y.

We define  
0

0 0( , ) 0.
( )

= ∆ ≥∫
t

t

sR t t s for all t
a s

Here is our first result. 

Theorem 4.1: Let conditions (i)-(iii) hold with 

 1 1γ β= >and and suppose

0 0 0

1
1 1

1 2
0

1 1lim ( , ) ( ) ( )
( , ) ( )

β
β β− −

→∞
∆ ∆ ∆ < ∞∫ ∫ ∫

t v u

t t tt
k u s p s p s s u v

R t t a v
    (2.3)

for all 0 0≥t . If x is a non-oscillatory solution of equation (1.1) for t, 

then 

0( ) ( ( , )) .= →∞x t o R t t as t   			                (2.4)

Proof: Let x be a non-oscillatory solution of equation (1.1). Hence 
x is either eventually positive or x is eventually negative.

First assume x is eventually positive. Fix   

0 1 1 00. ( ) 0 .≥ > ≥ ≥t Assume x t for t t for some t t

Using conditions (ii) and (iii) with 1 1β γ= =and  in equation 

(1.1) we have

( ) 1

1
2 10

( ) ( ) ( , ) ( , ( )) ( , ) ( ) ( ) ( ) β∆∆  ≤ − ∆ + − ∆ ∫ ∫
t t

t
a t x t k t s F s x s s k t s p s x s p s x s      (2.5)
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for all 1≥t t . Let 

 [ ]{ }1: max ( , ( )) : 0,= ∈ ∩m F t x t t t T

By assumption (i), we have  1 1

0 0
( , ) ( , ( )) ( , ) ( , ( ))− ∆ ≤ ∆∫ ∫

t t
k t s F s x s s k t s F s x s s

: .≤ =mk b   					                     (2.6)

Hence from (2.5) and (2.6), we get

( )
1

2 1( ) ( ) ( , ) ( ) ( ) ( ) β∆∆  ≤ + − ∆ ∫
t

t
a t x t b k t s p s x s p s x s                     (2.7)

If we apply (2.1) with  
1/ 1

1/ 1/
1 2 1

1,
β

β βλ β
β

−
− 

= = =  
 

X p x and Y p p

we obtain 
1

1 1 1
2 2 1 2( ) ( ) ( ) ( ) ( 1) ( ) ( ) 0

β β
β β β ββ β − − −− ≤ − ≥p t x t p t x t p t p t for t          (2.8)

Substituting (2.8) into (2.7) gives

( )
1

1
1 1 1

1 2( ) ( ) ( 1) ( , ) ( ) ( ) .
β β
β β ββ β

∆∆ − − −≤ + − ∆∫
t

t
r t x t b k t s p s p s s  

Integrating this equality from t1 to t, we have

 
1 1

1 1 11 1 1
2 1

( ) ( ) ( ) 1( ) ( , ) ( 1) ( ) .
( ) ( ) ( )

β β β
β β ββ β

∆
∆ − − −

  −
≤ + + − ∆ ∆  

    
∫ ∫

t u

t t

a t x t b t tx t k t s p s p s u
a t a t a t

Or,

1 1

1
1 1 1

2 1
1( ) ( , ) ( 1) ( ) ,

( ) ( )

β β
β β ββ β∆ − − −

 
≤ + − ∆ ∆ 

  
∫ ∫

t u

t t

ctx t k t s p s p s u
a t a t 

Where

1 1

1

( ) ( )
.

∆

= +
a t x t

c b
t

  				                 (2.9)

Integrating this equality from t1 to t we get,

 
1 1 1 1

1
1 1 1

1 2 1
1( ) ( ) ( , ) ( 1) ( ) ( ) .

( ) ( )

β β
β β ββ β − − −

  
≤ + ∆ + − ∆ ∆ ∆  

    
∫ ∫ ∫ ∫

t t v u

t t t t

sx t x t c s k v s p s p s s u v
a s a v 

0 0 0 0

1
1 1 1

2 1
1( ) ( , ) ( 1) ( ) ( ) .

( ) ( )

β β
β β ββ β − − −

  
≤ + ∆ + − ∆ ∆ ∆  

    
∫ ∫ ∫ ∫

t t v u

t t t t

sx t c s k v s p s p s s u v
a s a v

Now assume x is eventually negative, say x(t)<0 for t ≥ t1 for some 
t ≥ t0.

0 0 0 0

1
1 1 1

1 2 1
1( ) ( ) ( , ) ( 1) ( ) ( ) .

( ) ( )

β β
β β ββ β − − −

  
≤ + ∆ + − ∆ ∆ ∆  

    
∫ ∫ ∫ ∫

t t v u

t t t t

sx t x t c s k v s p s p s s u v
a s a v

 

Dividing by both sides of this inequality 0( , )R t t  and using (2.3), we 

see that x satisfies (2.4). 

This completes the proof. 

Next, we give the following simple result. 

Theorem 4.2: Let conditions (i) and (ii) hold with f2=0 and 

1( , ) 0 0 0.> ≠ ≥xf t x for x and t  

If x is a non-oscillatory solution of equation (1.1), then (2.4) holds.

Proof: Let x (t) be a non-oscillatory solution of equation (1.1) 
with f2=0. First assume x is eventually positive Fix 0 0.≥t  Assume say 

1 0( ) 0 .> ≥x t for some t t  From equation (1.1) we find  

10
( ( ) ( )) ( , ) ( , ( ))∆ ∆ = − ∆∫

t
a t x t k t s f s x s s  

10
( , ) ( , ( ))≤ − ∆∫

t
k t s f s x s s

Using (2.6) in the above inequality, we obtain 

 1( ( ) ( ))∆ ∆ ≤ ≥a t x t b for t t

The rest of the proof is similar to that of Theorem 2.1 and hence is 
omitted 

The following corollary is immediate.

Corollary 4.1: Let conditions (i) and (ii) hold with f2=0 and

1( , ) 0 0 0.> ≠ ≥xf t x for x and t and

0
0 0.

( )
∞

∆ < ∞ ≥∫t
s s for any t

a s

If x is a non-oscillatory solution of equation (1.1) then x(t) is 
bounded.

Theorem 4.3: Let conditions (i)-(iii) hold with 1 1β γ= =and  and 
suppose 

0 0 0

1
1 1

1 2
0

1 1lim ( , ) ( ) ( )
( , ) ( )

γ
γ γ− −

→∞

 
∆ ∆ ∆ < ∞  

 
∫ ∫ ∫

t v u

t t tt
k u s p s p s s u v

R t t a v

for all 0 0.≥t  If x is a non-oscillatory solution of equation (1.1), then 

(2.4) holds.

Proof: Let x be a non-oscillatory solution of equation (1.1).First 
assume that x is eventually positive.

Fix 0 0.≥t  Assume 1 1 0( ) 0> ≥ ≥x t for t t for some t t  Using condition 
(ii) and (iii) with 1 1β γ= <and  in equation (1.1) we have

( ) 1

1
2 10

( ) ( ) ( , ) ( , ( )) ( , ) ( ) ( ) ( )γ∆∆  ≤ − ∆ + − ∆ ∫ ∫
t t

t
a t x t k t s F s x s s k t s p s x s p s x s    (2.11)

By applying (2.2) with 
1 1

1/ 1
1 2

1, ( )γ γ γλ γ
γ

−
−= = =P x and Y p p

We have
1

1 1 1
2 1 1 2( ) ( ) ( ) ( ) (1 ) ( ) ( ) 0.

γ γ
γ γ γ γγ γ − − −− ≤ − ≥p t x t p t x t p t p t for t     (2.12)

Using (2.12) in (2.11) we have

( )
1

1
1 1 1

1 2( ) ( ) 1(1 ) ( , ) ( ) ( ) .
γ γ
γ γ γγ γ

∆∆ − − −≤ + − ∆∫
t

t
a t x t b k t s p s p s s

where b is as in (2.6). 

The rest of the proof is similar to that of Theorem 4.1 and hence is 
omitted.

Finally, we present the following results with different nonlinearities 
i.e. with β>1 and 1γ < .

Theorem 4.4: Let conditions (i)-(iii) hold with 1 1β γ> <and  and 
assume that there exists a positive rd-continuous function :ξ →T T  
such that

1
1

0 0 0

1 1
1 1 2

0

1 1lim ( , ) ( ) ( ) ( )
( , ) ( )

β
β γ
β γξ ξ

−− −

→∞

  
+ + ∆ ∆ ∆ < ∞      

∫ ∫ ∫
t v s

t t tt
k s u c u p u c u u s v

R t t a v  

for all 1 1
0 1 2 00, ( 1) (1 ) 0

β λ
β γβ β γ γ− −≥ = − = − ≥t where c and c for all t   If x 

is a non-oscillatory solution of equation (1.1), then (2.4) holds.

Proof: Let x be a non-oscillatory solution of equation 
(1.1). First assume x is eventually positive. Fix 0 0≥t  Assume 

1 1 0( ) 0> ≥ ≥x t for t t for somet t  Using conditions (ii) and (iii) in 
equation (1.1) we obtain
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 ( ) 1

1
10

( ) ( ) ( , ) ( , ( )) ( , ) ( ) ( ) ( ) ( )βξ
∆∆  = − ∆ + − ∆ ∫ ∫

t t

t
a t x t k t s F s x s s k t s s x s p s x s s

1
2( , ) ( ) ( ) ( ) ( ) .γ ξ + − ∆ ∫

t

t
k t s p s x s s x s s

As in the proof of Theorems 2.1 and 2.3, we can easily find

 ( )
0

1 1
1 1 1 1 1 1

1 2( ) ( ) ( , ) ( 1) ( ) ( ) (1 ) ( ) ( )
β β γ γ
β β β γ γ γβ β ξβ γ γ ξ

∆∆ − − − − − −
 

≤ + − + − ∆ 
  

∫
t

t
a t x t b k t s s p s s p s s

The rest of the proof is similar to that of Theorem 4.1 and hence is 
omitted. Theorem 4.4 can be re-stated as follows: 

Theorem 4.5: Let conditions (i)-(iii) hold with β>1and 1γ <  and 
assume that there exists a positive rd-continuous function :ξ →T T  
such that

1
1

0 0 0

1
1

0

1 1lim ( , ) ( ) ( )
( , ) ( )

β
β
βξ

−−

→∞

  
∆ ∆ ∆ < ∞      

∫ ∫ ∫
t v s

t t tt
k s u u p u u s v

R t t a v   

and	  

1
1

0 0 0

1
2

0

1 1lim ( , ) ( ) ( )
( , ) ( )

γ
γ
γξ

−−

→∞

  
∆ ∆ ∆ < ∞      

∫ ∫ ∫
t v s

t t tt
k s u u p u u s v

R t t a v
  (2.14)

for all  0 0.≥t  If x is a non-oscillatory solution of equation (1.1), then 

(2.4) holds.

For the case of forced integro-differential equation

 
0

( ( )( ( ))) ( , ) ( , ( )) ( )∆ ∆ + ∆ =∫
t

r t x t a t s F s x s s e t
Where : →e T R . Now, if in addition to the hypotheses of all the 

results presented above, we assume that is rd-contiuous function.

 
0 00

1 1lim ( ) .
( , ) ( )→∞

 
∆ ∆ < ∞ 

 
∫ ∫

t v

t tt
e s s v

R t t r v

then the conclusion of these results hold for equation (2.15).

Numerical Examples 
As we already mentioned that the results of the present paper are 

new even for the cases when T = R i.e., the continuous case or when 
T=Z i.e., the discrete case.

As a numerical illustration of Theorems 4.3, 4.4 and 4.1 respectively, 
let us consider the following equation

0

02 2( '( )) ' ( ( ) ( )) 0 ; 0
( )

γ β+ − = ≥
+∫

t

t

ttx t x s x s ds t
t s

  (3.1)

with initial conditions 0 0 0 0( ) '( ) '.= =x t x and x t x  Equation (3.1) can 
be converted to two simultaneous first order ordinary differential 
equations by substituting  ' .=tx y  This will lead to the following system:  

0 0
( )'( ) ; ( )= =

y tx t x t x
t  

0 0

' '
0 0 02 2

1( ) ( ( ) ( )) ; ( )
( )

γ β= − − − =
−∫ ∫

t t

t t

y t x s x s ds y t t x
t s

Many numerical techniques can be used to solve (3.2). In the 
current work, the second order, accurate modified Euler technique 
is considered. The time interval [t0,T] will be divided into N equal 
subdivisions with  width for each one. The prediction and correction 
steps of the modified Euler technique will be:

1

1

1 1 1 1

1 1 1 1

( , , )
( , , )

0.5 [ ( , , ) ( , , )]
0.5 [ ( , , ) ( , , )]

+

+

+ + + +

+ + + +

= + ∆
 = + ∆
 = + ∆ +
 = + ∆ +

i i i i i

i i i i i

i i i i i i i i

i i i i i i i i

x x t f t x y
y x tg t x y

x x t f t x y f t x y
y y t g t x y g t x y

  (3.3)

Where					       

( , , ) = yf t x y
t

					                 (3.4)

and							     

0

2 2( , , ) ( ( ) ( ))
( )

γ β= − −
−∫

t

t

tg t x y x s x s ds
t s

  		             (3.5)

The integral (3.5) can be approximated numerically at each time 
instant ti using the trapezoidal rule which has accuracy of 2( )∆ iO t  
where ∆ it  is the subdivision width when dividing the interval [ ]0 , it t  
into Ni subdivisions.

Let 0 0 01, 100, ( ) 1 '( )= = =t T x t and x t  in equation (4.3) for different 
values for γ  and β . Figure 1 shows the asymptotic behavior of x(t) with 
the time for 1/ 3γ =  and 1β =  [7]. The solution x(t) asymptotes to a 
straight line of slope 3.73 approximately after t=70. Increasing the value 
of β  to be equal 3, the line slope will increase to 74.5 approximately 
after t=90, as shown in Figure 2. Increasing  γ  to be equal 1 with 3,β =
 will have negligible effect on the solution behavior, as shown in Figure 
3. In this case the solution asymptotes, approximately, to the same 
straight line in Figure 2.

General Remarks
We conclude by presenting several remarks and extensions of the 

results given above 

i) The results presented in this paper are new for T=R and T=Z. 

ii) The results of this paper are presented in a form which is essentially 
new for equation (1.1) with different nonlinearities. Corollaries similar 
to Corollary 2.1 can be obtained. Here we omit the details. 

iii) The results of this paper will remain the same if we replace (1.2) 
of assumption (i) by

00
sup ( , )
≤ ≤

= ∗ < ∞
s t

k t s k  				                  (4.1)

with  0 0 0.,= ∗ >k k t and t

300

250

200

150

100

50

0
0                   20                  40                  60                  80                 100

X(t)

X = 3.73 *  t  +  const .

Figure 1: The solution x(t) and the approximate asymptotic line for 
1/ 3 1.γ β= =and
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or, we replace condition (1.2) of assumption (i) by:

there exist rd-continuous functions , : +→k m T R  such that 
( , ) ( ) ( )≤a t s k t m s  for all ≥t s  

1
0

sup ( ) :
≥

= < ∞
t

k t k

and 200
sup ( ) .
≥

∆ = < ∞∫
t

t
m s s k 			              (4.2)

with k=k1k2. The details are left to the reader.

iv) The technique offered in this paper can be employed to Volterra 
integral equations on timescales of the form

0
( ) ( , ) ( , ( )) 0.+ ∆ =∫

t
x t k t s F s x s s              (4.3)

As example, we reformulate Theorem 2.1 and find 

Theorem 4.1 Let conditions (ii) and (iii) hold with  β =1 and  γ =1 
and suppose

0

1
1 1

2 1lim ( , ) ( ) ( ) ,
β
β β− −

→∞
∆ < ∞∫

t

tt
k t s p s p s s               (4.4)

4000

3500

3000

2500

2000

1500

1000

500

0
0   20 40 60 80 100

x(t)

x = 74.5 * t  +  const.

Figure 2: The solution x(t) and the approximate asymptotic line for 
1/ 3 3.γ β= =and

4000

3500

3000

2500

2000

1500

1000

500

0
0  20 40    60 80 100

x(t)

x=74.5* t + const.

Figure 3: The solution x(t) and the approximate asymptotic line for
1 3.γ β= =and

for all 0 0.≥t  If x is a non-oscillatory solution of equation (4.3), then 
x is bounded Similar results can be obtained and the details are left to 
the reader.

In addition to the hypotheses of Theorems 2.1-2.6, assume

0lim ( , ) .
→∞

< ∞
t

R t t  (4.5)

If x is a non-oscillatory solution of equation (1.1), then x is bounded

v) The results of this paper can be extended easily to delay integro-
dynamic equations of the form.

0
( ( ) ( )) ( , ) ( , ( ( ))) 0∆ ∆ + ∆ =∫

t
a t x t k t s F s x g s s              (4.6)

Where : →g T T  is rd-continuous function, ( ) , ( ) 0∆≤ ≥g t t g t  for  
lim ( ) .
→∞

= ∞
t

g t  The formulation of the results is left to the reader. 

We note that we can reformulate the obtained results for the time 
scales T=R (the continuous case), T=Z (the discrete case), 2

0 ,= =T N T hZ
with h>0…etc. see [1]. The details are left to the reader.
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