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Abstract
The most severe cases of autism are diagnosed by extreme social dysfunction and other behavioral abnormalities. 

A number of genetic studies have been conducted to correlate behavioral phenotypes to genetic dysfunctions, but no 
“autism gene” has yet been discovered. In addition, environmental factors have been found to influence the development 
of autistic traits with high probability. This review will examine the role of a shortened period of neuroplasticity as a 
unifying feature of the autistic phenotype. The neuroplastic period of interest normally extends into adolescence, 
allowing for neural integration and the development of language and social skills. Early closure of this period may result 
in a shortened period of development, forcing the brain to rely on underdeveloped structures. 
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other barrier to analyzing the spectrum of behaviors is the separation 
of information into different academic communities. Behavioral data 
is typically found in psychology literature and often with small sample 
sizes; while physiological, structural, and molecular data are typically 
relegated to separate scientific fields. In these cases, data from several 
communities and techniques may be required to observe a pattern.

An additional confounding factor in neural dysfunctions is the 
role of time. As the individual develops, symptoms change, manifest, 
or even fade. This change over time is critical for understanding both 
the problem and the cause of ASD. Some of the more interesting 
observations are made with this consideration, such as the symptom 
reducing effect of exercise, diet, or early behavioral intervention on 
autistic symptoms over the long term [10-12]. The focus on time, 
particularly into adolescence, has been studied in the disease state 
of ASD, but there has been no attempt to find a normal-functioning 
correlate to the autistic phenotype.

One of the main deficits in those with ASD is the lack of proper 
attribution of feelings to others, a sort of mindreading referred to as 
Theory of Mind [13,14]. The ability to accurately attribute mental states 
for those with ASD, further extends into failing to understand even 
their own mental states [15]. There is neural integration between the 
systems supporting visual processing, social cues, and Theory of Mind 
systems [16], and imaging studies depict the change in connectivity 
between these systems over time in normal subjects [17], suggesting 
activity-dependent growth interruption may lead to symptoms of ASD. 

Activity-dependent growth interruption is supported by the 
Critical Period Hypothesis that proposes the existence of a normally 
occurring window of opportunity for the development of language 
and other skills requiring higher cognition, with a limited timeframe 
closing sometime in adolescence [18]. Critical periods generally refer 
to times during which the brain is sensitive to experience-dependent 
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Introduction
Autism spectrum disorder (ASD) has recently been redefined 

in the Diagnostic and Statistical Manual of Mental Disorders-5. 
Symptoms required for diagnosis of autism and related diseases are 
being reclassified under the blanket term ASD. The reclassification 
will encompass diseases such as Asperger’s disorder under the ASD 
umbrella while removing diagnostic requirements associated with 
age of onset of symptoms. While these changes may over-generalize 
a wide spectrum of disorders, it simplifies the descriptions of social 
and behavioral deficits required for diagnosis. These include persistent 
deficits that are not a result of general developmental delay and 
include abnormal or reduced socio-emotional reciprocity, poor 
use of nonverbal communication, difficulty with age-appropriate 
relationships, repetitive speech use or movements, rituals or patterns 
of verbal or nonverbal behavior, unusual focus on objects or strange 
interests, and abnormal reaction to sensory input including fascination 
with light or spinning objects. Symptoms must be present in early 
childhood even if diagnosis is made later, and there must be a general 
impairment of daily functioning as a result of these symptoms [1,2].

ASD has been tied to single-point mutations, copy number 
variation, and polygenic mechanisms. There are high correlation rates 
from twin studies suggesting that many mutations increase the risk of 
ASD, but no single mutation causes ASD in 100% of cases, suggesting 
complex interactions influenced by both genes and the environment [3]. 
Pharmacological treatment has shown some benefit for treating ASD 
symptoms but there has been no effective cure found [4]. Diagnosis 
has also been complicated by a variety of physiological dysfunctions 
that have been associated with ASD such as in the gastrointestinal and 
immune systems, as well as the stereotypical effects on the brain [5].

Some of the better-known diseases that share genetic or 
physiological traits with ASD include schizophrenia, bipolar disorder, 
Fragile X syndrome, and ADHD [6-9]. The interplay of multiple genes 
in these disorders and the variety of outcomes suggests the interruption 
of a complex and vital network required for normal development. The 
symptoms of these diseases can manifest in a wide spectrum from mild 
to severe, complicating the search for an ultimate cause. Functional 
and structural defects are often used in genome studies, but the range 
and variety in phenotypic presentation of behaviors is difficult to 
incorporate as a factor due to complications in obtaining data. The 
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growth and refinement, when neural circuits are custom tailored to the 
individual beyond what is dictated by the genome, as influenced by the 
environment [19].

The Critical Period Hypothesis is supported by observations of 
survivors of various forms of depravation. For example, ‘feral’ children 
are individuals who were raised in isolation, with wild animals, or under 
conditions of extreme neglect. They exhibit a variety of mental deficits, 
and if behavioral therapy is attempted too late there is a roadblock at 
the acquisition of higher syntactical structures, suggesting the critical 
period has closed [20,21]. Feral children, even after considerable 
rehabilitation, exhibit many behavioral symptoms similar to ASD 
including impaired language skills, social deficits, and behavioral 
abnormalities [21-23]. In both ASD and in cases of extreme neglect or 
isolation, there has been some success with intense behavioral therapy 
when administered as early as possible. To take best advantage of this 
window of opportunity, recommendation for behavioral intervention 
in ASD is as young as 2-3 years [24].

The most interesting difference between ASD and cases of feral 
children is that similar phenotypes result from two very different 
causes. ASD is generally considered genetic, while feral children are a 
product of environment. Both types of deficit have had some success 
therapeutically, with the therapeutic window occurring during the 
critical period in childhood when the brain is more plastic. The closing 
of the critical period signals a significant reduction in plasticity, as 
neural networks, structures, and connections become consolidated 
[19].

Neural Plasticity
Critical periods are times when experience has a strong impact on 

brain development [25,26]. In the visual cortex, for example, there is a 
limited window for the development of stereoscopic vision. If one or 
both eyes are deprived of normal vision during this time, vision will be 
permanently impaired. This critical period coincides with rapid synapse 
production in the visual cortex which is thought to accommodate the 
development of normal vision [26,27]. There are also periods for filial 
imprinting [28,29], speech sound recognition [30-32], and social and 
emotional behavior [29,33-35]. These critical periods rely on proper 
functioning of neural circuits that process experience [25].

Plasticity is the ability of neurons or the networks they comprise to 
change in response to these experiences. During periods of plasticity, 
the brain is particularly resilient, and can recover easily from some 
injuries that cause permanent damage in adults [36]. Plasticity also 
describes the ability to develop new functions through new axonal 
outgrowths, synapse elimination, and synapse consolidation [25]. Most 
axonal outgrowth begins at birth and ends at age 2-3 [37,38]. Dendritic 
growth extends slightly beyond that to year 4, and individual variation 
in dendritic trees is observed after age 5. The variation in dendritic trees 
is hypothesized to be the effect of experience and environment [39]. 
Some parts of the brain such as the frontal cortex continue growing 
until age 12-13 [40], still within this window of plasticity. A sequence 
of sensitive periods has been described in youth, where one period 
must close before the next may open; for example, if computation 
and consolidation are separate, the computational network receiving 
information must become reliable before consolidation can occur. 
Premature consolidation or consolidation after deprived or inadequate 
environments will therefore result in abnormal neural circuit 
connectivity in adulthood [25]. This abnormal connectivity provides a 
rationale for the difficulty in learning new skills, such as first language 
acquisition in those with insufficient language exposure during 
childhood.

The processes involved in synaptic plasticity rely on a variety of 
structural and signaling molecules [25], and plasticity is controlled by 
a signaling network associated with molecules regulated by neuronal 
activity. The synapse responds to neuronal activity and in turn triggers 
alterations in RNA translation, signaling for regular synapse function 
and control. These are the experience-dependent pathways necessary 
for the acquisition of new skills [41-43]. The behavior of synapses at 
different regions in the brain is used as a measure of plasticity [41,44,45]. 
Excitatory/inhibitory balance at the synapse is even suggested to be 
the controller of plasticity [26]. Structurally, the synapse is also reliant 
on the extracellular matrix and cellular adhesion molecules, both of 
which have been tied to synaptic plasticity and mental disorders, when 
dysfunctional [46,47], adding to the immense number of molecules 
necessary for proper functioning of the neural network.

Synaptogenesis peaks at 2-4 years and continues steadily to 10-15 
years, concluding with neurotransmitter maturation around the time 
of massive synaptic pruning and consolidation in adolescence. The 
frontal and parietal cortices continue growing through years 12-14, 
presumably accommodating learning processes and incorporation of 
new experiences. In addition, myelination continues to increase from 
14-21 years, indicating improved isolation of different electrical signals 
[39]. These changes are part of the consolidation of neural networks 
and overall decrease in neural plasticity observed during adolescence.

Adolescent Changes
In addition to synaptic pruning and consolidation, typical neural 

changes during adolescence include hormonal changes [48], limbic 
system maturation [49], redistribution of fiber density across brain 
regions [50], increased myelination [39], decreased gray matter density 
[51] and new synapse formation [52]. These changes coincide with 
an overall decrease in synaptic plasticity. The limbic system matures 
just ahead of cognitive control mechanisms, and this unbalanced 
maturation is believed to be the cause of increased risk seeking 
behaviors observed in adolescence [53]. Hormonal influence during 
this time of sexual maturation also has long-lasting structural impact 
on neural plasticity and remodeling of cortical and limbic neural 
circuits [54-56]. Hormones such as estrogen and testosterone also have 
organizational and activational effects on the nervous system [57], and 
play a role in the addition of new cells in some areas of the brain such 
as the amygdala [58].

Synaptic pruning is so aggressive during this time that up to 50% 
of connections are removed in some brain regions [59]. One potential 
benefit of this massive pruning is energy efficiency, as synapses are 
energetically costly and the pruning process is conserved across species 
[60-62]. The speed and efficiency of information signaling across brain 
regions is also dramatically increased by a surge of myelination [63,64], 
resulting in the drastic increase in white matter, with a simultaneous 
decrease in gray matter [65]. This process helps to reconfigure brain 
activity, thinning out unnecessary connections, and allowing for better 
information processing [60]. 

During normal cognitive processes there are complex neural 
circuits being used across brain regions. The cerebellum provides 
timing control over the cerebral cortex and sensory systems. Networks 
between brain regions are supported by smaller networks within those 
regions and micro-scale networks between cell types. The complexity 
of this circuitry allows for an enormous number of potential mutations 
to interfere with its development. All of the molecular players in 
neural plasticity and development can impact the neural network and 
therefore the development of complex emotional and cognitive abilities 
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[66]. A variety of psychiatric disorders, including ASD, have been tied 
to impairment of these connections [67-69].

There is a significant growth period when the brain is building 
these networks necessary for later cognitive development, and is highly 
plastic and susceptible to influence from variable social atmospheres 
and a host of environmental effects [70,71]. Some regions and 
developmental periods are more susceptible than others to damage 
[72]. The prefrontal cortex is responsible for higher cognitive processes 
like language and IQ [73], matures later than some areas, and behaviors 
relying on this area of the brain are more heritable than others, with 
heritability increasing with age [72]. This tells us that as the individual 
ages, the role of genes becomes increasingly important to cognitive 
abilities. This is paralleled by the decreasing impact of environment on 
shaping neural networks as the individual ages. The tradeoff between 
genes and environment over time suggests a window of opportunity 
for therapy and a supportive environment for those with debilitating 
genetic mutations.

Once this adolescent neural growth is complete it is more difficult 
for new experience to influence the brain as it grows. Several changes 
take place that lead to the loss of experience-based neural plasticity 
during young adulthood. While later experience elaborates and builds 
on what was created during youth, the foundation for this learning is 
essentially reliant on the scaffolding from early life experiences [74]. 
Because higher cognitive functions and the prefrontal cortex develop 
later, faulty mechanisms in early development can compound their 
impact on cognitive skills over time.

Potential Triggers of ASD
Diagnosis of ASD is usually around age 3 [75], and abnormalities 

are often observed by parents or experts by 12 months [76,77]. 
Age 3 is also the time when normal toddlers experience a peak in 
synapse density in areas of the brain linked to language development 
[70,78]. Studies suggest that infants acquire language through the 
modifications of constructs, refinement and fine-tuning of the brain 
space [79], while categorizing and mapping actions onto the brain 
[80]. This categorization and mapping is theorized to focus attention 
on items which are relevant, much in the same way that speech sound 
recognition narrows to the native tongue the child is exposed to [79]. It 
is possible that all sensory input is incorporated in this way; organizing 
and categorizing experience into informational items as the individual 
grows. In a child with ASD, if the neural networks are dysfunctional, 
this organizing feature would also be impaired and typical language 
impairments would be observed.

ASD is believed to be mainly of genetic origin, but the best genetic 
results are probabilistic correlations and not necessarily causal [81]. 
Four hundred to 1,000 loci have been implicated [82] but this has 
only compounded the problem of identifying a cause. The most 
specific and rare mutations seem to be the most helpful as they have 
higher correlations to ASD and show mechanistic connections across 
signaling networks [83]. For example, several mutations found in 
ASD are directly related to functions required by plasticity (Table 
1). Many of these genes are known to be regulated by neural activity, 
including synaptic cell-adhesion molecules and others involved in the 
postsynaptic density in the dendritic spine head. Most of the genes 
listed in Table 1 are related to activity-dependent modifications and 
interact across complex pathways, as seen in Figure 1, making them 
necessary for learning and plasticity. These molecules associate with 
complex neural networks utilizing a vast array of molecules, any one 
of which has potential to cause a disorder if changed by mutation. This 

neural network model has already been proposed as an explanation for 
the wide diversity of mutated genes found in ASD, due to observed 
under connectivity across the neural network [83,84].

Recently, genome-wide studies have utilized diagnostic interviews 
for classifying the variety of phenotypes observed in ASD into 
categories for specialized gene analysis. Professional psychologists 
conduct interviews and perform the classification. This behavioral data 
is conducted in large sample sizes in the best cases, such as a recent 
study, which utilizes an array of statistical methods to achieve greater 
statistical power, such as the gene C80RFK32, with p-value of 3.44×10-8 
[85]. However, most genetic studies do not agree on which genes are 
significant for producing the ASD phenotype. This leads to the general 
consensus that statistical methods need to remain under constant 
revision. Another possible explanation may be that genes need not hold 
statistical value across large sample sizes to tell us something important 
about the causal relationship. It may turn out that each gene found 
connected to ASD, even at low probability, is somehow included in the 
neural network required in its entirety for proper cognitive function. 
If this is the case, all pieces of this genetic puzzle, even statistically 
insignificant ones, may be necessary to see the full picture. The most 
interesting information might turn out to come from the least frequent 
mutations.

Treatments are speculated to require customization on the 
individual level due to the variability in genetic mutation across 
individuals. Mouse models provide hope for success with replacement 
therapy specific to the individual, but will require understanding of 
each individual’s genetic dysfunction at the synapse level [83]. Some of 
the most confounding aspects of autism have even been helped by these 
genome studies. For some time, the 4:1 ratio of male:female occurrence 
in ASD puzzled researchers, but recent studies now connect autism to 
the offset of hormone metabolism between genders and various genetic 
roles in development which may increase phenotypic presentation of 
symptoms in males. Females with the same mutations that give rise 
to ASD in males have stronger protection from the effects of these 
mutations [86]. 

Many potential triggers have been investigated for a causal role 
in ASD disorders, including sulfate levels [87], serotonin levels 

Gene Relevant function
CDH9/10 Cell-to-cell adhesion, synapse development and maintenance [85]
CLTCL1 Induced by neural activity [107,108]
FMR1 Protein-synthesis-dependent plasticity of synapses [43,109]
HRAS Activity-dependent development and plasticity [109-111]

MAP2K2 Activity-dependent development and plasticity [109-111]

MECP2 Possible genome-wide chromatin response to neuronal activity 
[112], experience-dependent synaptic remodeling [113]

NCKAP5L Induced by neural activity [107,108]
NLGN3/4 Synaptic adhesion [43]
NRXN1 Synaptic adhesion [43]
PTEN Protein-synthesis-dependent plasticity of synapses [43,109]

SEMA5A Axon outgrowth guidance [114]

SHANK1/3 Scaffolding in the postsynaptic density of excitatory synapses [115-
117]

SHANK2 Scaffolding in the postsynaptic density of excitatory synapses [115-
117], synaptic plasticity in hippocampus [118,119]

SYNGAP1 Activity-dependent development and plasticity [109-111]
TSC1/2 Protein-synthesis-dependent plasticity of synapses [43,109]

UBE3A/B Induced by neural activity [107,108], synaptic plasticity [120,121]
ZNF18 Induced by neural activity [107,108] 

Table 1: Genes found altered in autism.
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[88], pesticide exposure [89], maternal trauma [90], aluminum and 
acetaminophen [91], oxytocin [92], general diet [11], and mercury 
poisoning [93]. Most of these studies have demonstrated significant 
correlations; however, the fact that so many separate factors have 
a significant role in the development of a set of symptoms, suggests 
underlying factors may be at play. In addition, many of these causal 
factors have no apparent mechanistic relation to each other. The 
interactions are broad and simply too vast to posit a simple molecular 
explanation.

Brain volume in ASD increases rapidly from below normal at birth 
to 10-12% larger than normal at 2-4 years old. Volume growth ends 
around 2 years of age [70]. Increased cell packing and density in the 
limbic system and hippocampus in ASD in childhood is suggested 
to show early developmental curtailment [94], as these are areas that 
normally experience growth at a later time [49,53]. This confirms at 
least some abnormally timed growth patterns, and suggests the brain is 
maturing ahead of schedule.

General differences in ASD versus controls have been observed in 
volumes of white and grey matter distribution [95], control circuitry 
between brain areas [66,96], ion channel location and density [97], and 
general brain overgrowth [70]. When seeking for a cause, sometimes 
these differences are hypothesized to give rise to specific phenotypes. 
Causes of these structural abnormalities are then sought after, which 

in turn leads to related genes that influence the development of a given 
structure. But these genes may turn out to have little or no influence 
on the behavioral phenotype of ASD. This is one possible explanation 
for the low probability of cause-effect relationships in ASD-associated 
genes. A more successful approach may be to examine neural networks 
that include even the rarest of mutations and determine the causal 
relationship and associated physiological results afterwards. For 
example, brain-derived-neurotrophic factor (BDNF) is found in 
higher levels in ASD [5] and is shown to prematurely open critical 
periods when over expressed in mice [98,99]. Other mutated genes 
associated with ASD, such as those shown in Table 1, share the trait of 
being connected in some way to neural plasticity, and the mechanisms 
required for plasticity. 

Brain overgrowth in ASD occurs in regions that normally mature 
during adolescence, and mutations occur in the network required for 
plasticity. This suggests an early closure of the critical period, and a loss 
of network consolidation that would normally occur in later life, had 
processes developed normally. This implies that the early environment 
is critical to individuals with ASD. The strength of environment as 
causal in these neural pathways is also apparent in the reports of success 
in early behavioral treatments for autistic symptoms [100]. 75-95% of 
cases now report the ability to develop useful speech if intervention 
is given before age 5 [101,102], demonstrating the shortened window 
into childhood of what normally continues into puberty.

Figure 1: STRING interaction network. Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) is a database of known and predicted protein interactions. 
The interactions include direct (physical) and indirect (functional) associations. STRING quantitatively integrates interaction data. The database currently covers 
5,214,234 proteins from 1133 organisms. The interaction network was generated by seeding with genes identified (Table 1). Additional interacting proteins were 
identified through STRINGS and are included in the network as likely candidates for contributing roles in ASD. Blue lines connecting each node are weighted for 
confidence of interaction, based on peer-reviewed, published information. More data exists to support an interaction between those nodes connected by the heavier 
blue lines.
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The general consensus is that ASD is governed by an interaction 
between genes and the environment during critical developmental 
periods that are interrupted in a variety of possible ways [103]. Viewing 
ASD as a condition whereby premature closure of a critical period 
during adolescence occurs provides an explanation for the array of 
behavioral symptoms and abnormalities displayed in autism. 

Conclusion
Early loss of plasticity deprives the autistic child of the developments 

that make sense out of sensations. Without the network consolidation 
that normally occurs in the maturing child, the autistic child remains a 
victim of the onslaught of stimuli we may imagine an infant receiving. 
Innumerable sights, sounds, and various other sensations, seemingly 
without coherence, will perpetually attack them from every angle. 
Luckily, with the passage of time and the assistance of therapy (and 
patience), these children are often able to sort out the bombardment 
of stimuli and acquire the ability to communicate. Sometimes with 
surprising wit and clarity [104].The genetic code has been described 
as a foundation or framework upon which our later abilities are built 
with influence from the environment [74]. Although there is significant 
plasticity loss in adolescence, there is still myelination and network 
remodeling throughout life [105,106] which at least suggests an 
individual with significant plasticity loss can still learn. The variety of 
genetic abnormalities that lead to ASD, the spectrum of symptoms and 
behaviors, and the range of therapeutic outcomes suggest that some 
of these mutations are more detrimental to the neural network than 
others. Many of these individuals most certainly retain the ability to 
learn (Table 1) [107-121]. The hope is that this opportunity may be 
recognized and taken advantage of by caregivers, leading to improved 
understanding and quality of life.
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