Autoimmunity in Neurological and Psychiatric Disorders: Participation of Antibodies and Cytokines in the Immunopathogenesis of these Diseases

Angel Alberto Justiz Vaillant1*, Wayne Mohammed1, Sehlule Vuma1 and Norma Anderson2

1Department of Para-clinical Sciences, Faculty of Medical Sciences, The University of the West Indies, St. Augustine Campus, Trinidad and Tobago, West Indies
2Department of Basic Medical Sciences, The University of the West Indies, Mona campus, Jamaica, West Indies

*Corresponding author: Angel Alberto Justiz Vaillant, Department of Para-clinical Sciences, Faculty of Medical Sciences, The University of the West Indies, St. Augustine Campus, Trinidad and Tobago, West Indies, E-mail: aval4883@gmail.com

Letter to the Editor

Glutamatergic function deficits are hypothesized to contribute to the pathogenesis of neuropsychiatric disorders, including schizophrenia. In autoimmune encephalitis it is thought that the receptors and proteins involved in glutamatergic neurotransmission are the antigen targets: N-methyl-d-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazolpropionic acid (AMPA) receptors [1]. Glutamate receptor antibodies such as anti-AMPA and anti-NMDA can be found in some neurological and autoimmune disorders including systemic lupus erythematosus (SLE), Sjogren’s syndrome, schizophrenia, seizure disorder and mania. They can down regulate cerebral functions leading to brain damage that induces behavioural, psychiatric and cognitive abnormalities in animal models and they can be reverted in some patients by the use of immunotherapy [2-3].

Controversially autoantibodies (Ab’s) to the "B" peptide (amino acids 372-395) of glutamate/AMPA receptor subtype 3 (GluR3) were found in serum and cerebrospinal fluid of some patients with different types of epilepsy but not association was found between the presence of such antibodies and patients suffering from epilepsy that accompanies anti-phospholipid syndrome (APS) or Sneddon’s syndrome (SNS), which are two autoimmune disorders [4]. Anyway these findings are important because some of these neurological disorders may fall in the field of clinical immunology and therefore it may be needed the realization of a screening for specific autoimmune antibodies and immune cells, complement proteins and cytokines. If the autoimmune nature of this neurological or psychiatric problems is confirmed the patient could be treated with immunotherapy including intravenous immunoglobulins, immunosuppressors, plasmapheresis, rituximab and cytostatic agents. We cannot forget that in SLE neurological and psychiatric manifestations are present as evidence of the interrelation between both immune and central nervous systems [5].

The biological basis of depression in SLE has been recently confirmed. The participation of biochemical and neurophysiological changes, induced by cytokines, in the development of neuropsychiatric symptoms has been demonstrated. Cytokines are capable of causing mood swings and depression. Down regulation of the hypothalamic-pituitary-adrenal (HPA) axis correlates with neurophysiological changes involved in depression. In addition to that cerebro-reactive autoantibodies present in the cerebrospinal fluid (CSF), such as anti-NMDA and anti-ribosomal P, can cause significant damage to neurons which are relevant to humor and behaviour, leading to depressive symptoms [6]. Epilepsy is a complex and multifactorial phenomenon. Accumulating evidence suggests that the immune system may play an important role in neuronal excitability and epileptogenesis. In epilepsy patients studies (including ex vivo) show elevated levels of IL-1β, IL-2, IL-5, IL-6 or TNF-α after carbamazepine, valproic acid and phenytoin treatment [7]. In Table 1 we summarized the association of certain autoantibodies with specific diseases of the central nervous system, and therefore they can be classified as autoimmune disorders and this has implications in the management of these problems where immune-therapy could be used. Table 2 shows a cytokine involvement in neuropsychiatric diseases that can be interpreted as a pathogenic role of these molecules in the genesis of these problems or the result of interactions between the immune and/or endocrine system with the brain.

<table>
<thead>
<tr>
<th>Disease</th>
<th>Autoantibody</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cognitive and affective dysfunctions in autoimmune thyroiditis</td>
<td>Anti-thyroid peroxidase Ab, anti-central nervous system Ab</td>
<td>[8]</td>
</tr>
<tr>
<td>Hashimoto’s encephalopathy (HE)</td>
<td>Anti-o-enolase Ab, anti-thyroid peroxidase Ab</td>
<td>[8,9]</td>
</tr>
<tr>
<td>Limbic encephalitis in multiple sclerosis</td>
<td>Anti-N-methyl D-aspartate-type glutamate receptor Ab</td>
<td>[1,10]</td>
</tr>
<tr>
<td>Complex regional pain syndrome</td>
<td>Anti-nuclear Ab (ANA), anti-neuronal Ab</td>
<td>[11]</td>
</tr>
<tr>
<td>Idiopathic and symptomatic epilepsies</td>
<td>Neurotropic Abs to NF-200, GFAP, MBP and S100, and to receptors of neuromediators (glutamate, GABA, dopamine, serotonin and choline-receptors)</td>
<td>[12]</td>
</tr>
<tr>
<td>Schizophrenia</td>
<td>Autoantibodies against glutamate, dopamine, acetylcholine and serotonin receptors, and antineuronal antibodies against synaptic biomolecules</td>
<td>[13-16]</td>
</tr>
<tr>
<td>Lambert-Eaton myasthenic syndrome</td>
<td>Autoantibodies against P/Q-type voltage-gated calcium channels</td>
<td>[17]</td>
</tr>
<tr>
<td>Myasthenia gravis</td>
<td>Auto-Ab to muscle-specific tyrosine kinase</td>
<td>[18]</td>
</tr>
</tbody>
</table>

Table 1: Presence of auto-antibodies in neurological and psychiatric disorders

<table>
<thead>
<tr>
<th>Disease</th>
<th>Cytokine involved</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neuropsychiatric systemic lupus erythematosus</td>
<td>Elevated interleukin (IL)-17, IL-2, interferon-gamma (IFN-γ), IL-5, basic</td>
<td>[19]</td>
</tr>
</tbody>
</table>
We do not want to conclude this letter without speaking about the blood-brain barrier (BBB) as shown in Figure 1. It is a complex structure lining the capillaries throughout the brain. In normal conditions the BBB denies the traffic of large molecular weight molecules such as proteins [46]. A breach in the BBB can allow circulating antibodies that cross-react with neurological tissues to infiltrate the brain causing tissue damage as it is seen in autoimmune disorders including neuropsychiattyic systemic lupus erythematosus (NSLE). It may also cause neurotoxicity. Autoantibodies and cytokines once inside the brain can cause inflammatory reactions that can be amplified by the damaging effects of TH1 and TH17 lymphocytes. Multiple sclerosis is characterized by a disruption in the BBB that allows myelin-specific lymphocytes to induce demyelination, as evidenced by the appearance of gadolinium (gd)-enhancing lesions on magnetic resonance (MR) imaging [47-49]. Table 4 shows experimental therapy and mechanisms of actions in neurological autoimmune disorders.

Table 2: Cytokine involvement in neuropsychiatric diseases.

| Diseases | References | Demyelinating polyneuropathy | IL-10 | Myeloid and B cell differentiation | Interneuron, glial cell death and apoptosis | Neurocognitive impairment | Cognitive dysfunction and memory loss | Autoantibody response | Autoimmune response | Immune cell trafficking | BBB disruption | Table 4: List of neurological diseases where the use of intravenous immunoglobulins (IVIG) has been used successfully.

We do not want to conclude this letter without speaking about the blood-brain barrier (BBB) as shown in Figure 1. It is a complex structure lining the capillaries throughout the brain. In normal conditions the BBB denies the traffic of large molecular weight molecules such as proteins [46]. A breach in the BBB can allow circulating antibodies that cross-react with neurological tissues to infiltrate the brain causing tissue damage as it is seen in autoimmune disorders including neuropsychiattyic systemic lupus erythematosus (NSLE). It may also cause neurotoxicity. Autoantibodies and cytokines once inside the brain can cause inflammatory reactions that can be amplified by the damaging effects of TH1 and TH17 lymphocytes. Multiple sclerosis is characterized by a disruption in the BBB that allows myelin-specific lymphocytes to induce demyelination, as evidenced by the appearance of gadolinium (gd)-enhancing lesions on magnetic resonance (MR) imaging [47-49]. Table 4 shows experimental therapy and mechanisms of actions in neurological autoimmune disorders.

We do not want to conclude this letter without speaking about the blood-brain barrier (BBB) as shown in Figure 1. It is a complex structure lining the capillaries throughout the brain. In normal conditions the BBB denies the traffic of large molecular weight molecules such as proteins [46]. A breach in the BBB can allow circulating antibodies that cross-react with neurological tissues to infiltrate the brain causing tissue damage as it is seen in autoimmune disorders including neuropsychiattyic systemic lupus erythematosus (NSLE). It may also cause neurotoxicity. Autoantibodies and cytokines once inside the brain can cause inflammatory reactions that can be amplified by the damaging effects of TH1 and TH17 lymphocytes. Multiple sclerosis is characterized by a disruption in the BBB that allows myelin-specific lymphocytes to induce demyelination, as evidenced by the appearance of gadolinium (gd)-enhancing lesions on magnetic resonance (MR) imaging [47-49]. Table 4 shows experimental therapy and mechanisms of actions in neurological autoimmune disorders.

We do not want to conclude this letter without speaking about the blood-brain barrier (BBB) as shown in Figure 1. It is a complex structure lining the capillaries throughout the brain. In normal conditions the BBB denies the traffic of large molecular weight molecules such as proteins [46]. A breach in the BBB can allow circulating antibodies that cross-react with neurological tissues to infiltrate the brain causing tissue damage as it is seen in autoimmune disorders including neuropsychiattyic systemic lupus erythematosus (NSLE). It may also cause neurotoxicity. Autoantibodies and cytokines once inside the brain can cause inflammatory reactions that can be amplified by the damaging effects of TH1 and TH17 lymphocytes. Multiple sclerosis is characterized by a disruption in the BBB that allows myelin-specific lymphocytes to induce demyelination, as evidenced by the appearance of gadolinium (gd)-enhancing lesions on magnetic resonance (MR) imaging [47-49]. Table 4 shows experimental therapy and mechanisms of actions in neurological autoimmune disorders.
When it is damaged immune and accessory cells go through and reach the brain, which is an immunological privileged organ, and after these immunological components infiltrate the extracellular compartments and cause neuronal damage and neurotoxicity. Autoantibodies with specificity for neuron cells and other components of the central nervous system react with their targets, causing for example, demyelination as it is seen in several neurological diseases including multiple sclerosis, neuromyelitis optica, Guillain-Barré syndrome and chronic inflammatory demyelinating polyneuropathy that are autoimmune diseases, where the damaged myelin impairs the conduction of signals in the affected nerves.

References

2. Levite M (2014) Glutamate receptor antibodies in neurological diseases: anti-AMPA-GluR3 antibodies, anti-NMDA-NR1 antibodies, anti-NMDA-NR2A/B antibodies, anti-mGluR1 antibodies or anti-mGluR5 antibodies are present in subpopulations of patients with either: epilepsy, encephalitis, cerebellar ataxia, systemic lupus erythematosus (SLE) and neuropsychiatric SLE, Sjogren’s syndrome, schizophrenia, mania or stroke. These autoimmune anti-glutamate receptor antibodies can bind neurons in few brain regions, activate glutamate receptors, decrease glutamate receptor’s expression, impair glutamate-induced signaling and function, activate blood brain barrier endothelial cells, kill neurons, damage the brain, induce behavioral/psychiatric/cognitive abnormalities and ataxia in animal models, and can be removed or silenced in some patients by immunotherapy. J Neural Transm 121: 1029-1075.

3. Ganor Y, Goldberg-Stern H, Blank M, Shoefeld Y, Dobrynina LA, et al. (2005) Antibodies to glutamate receptor subtype 3 (GluR3) are found in some patients suffering from epilepsy as the main disease, but not in patients whose epilepsy accompanies antiphospholipid syndrome or Sneddon’s syndrome. Autoimmunity 38: 417-424.

