alexa Automatized Procedure to Shape a Regional Personalized Electrode for Transcranial Electrical Stimulation | Open Access Journals
ISSN: 2155-9538
Journal of Bioengineering & Biomedical Science
Like us on:
Make the best use of Scientific Research and information from our 700+ peer reviewed, Open Access Journals that operates with the help of 50,000+ Editorial Board Members and esteemed reviewers and 1000+ Scientific associations in Medical, Clinical, Pharmaceutical, Engineering, Technology and Management Fields.
Meet Inspiring Speakers and Experts at our 3000+ Global Conferenceseries Events with over 600+ Conferences, 1200+ Symposiums and 1200+ Workshops on
Medical, Pharma, Engineering, Science, Technology and Business

Automatized Procedure to Shape a Regional Personalized Electrode for Transcranial Electrical Stimulation

Santi G4, Cancelli A1,3, Cottone C1, Carducci F4and Tecchio F1,2*

1Department of Neuroscience, Laboratory of Electrophysiology for Translational neuroscience (LET’S) e ISTC e CNR, Fatebenefratelli Hospital, Rome, Italy

2Department of Neuroimaging, IRCCS San Raffaele Pisana, Rome, Italy

3Department of Geriatrics, Neurosciences and Orthopaedics, Institute of Neurology, Catholic University of Sacred Heart, Rome, Italy

4Department of Physiology and Pharmacology, Neuroimaging Laboratory, University of Rome “Sapienza”, Italy

*Corresponding Author:
Franca Tecchio
Laboratory of Electrophysiology for Translational
neuroscience (LET’S) e ISTC e CNR
Department of Neuroscience, Fatebenefratelli Hospital
Rome, Italy
Tel: +39 06 6837382
Fax: +39 06 6837382
E-mail: [email protected]

Received Date: December 18, 2015; Accepted Date: December 27, 2015; Published Date: January 30, 2016

Citation:Santi G, Cancelli A, Cottone C, Carducci F, Tecchio F (2016) Automatized Procedure to Shape a Regional Personalized Electrode for Transcranial Electrical Stimulation. J Bioengineer & Biomedical Sci S3:001. doi:10.4172/2155-9538.S3-001

Copyright: © 2016 Santi G, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Visit for more related articles at Journal of Bioengineering & Biomedical Science


Objective: The purpose of this study is to obtain/create/develop an automatized procedure to personalize electrodes for transcranial electrical stimulation (tES) using individual brain magnetic resonance images (MRI). The electrode thus matches the individual cortical folding of the whole body bilateral primary somatosensory cortex (S1RePE). The selection of a specific regional brain target is a crucial part of any neuromodulation intervention, which is a promising tool in the enhancement of recovery from neurological or psychiatric damages.

Methods: By employing highly standardized MRI analysis software, we developed an automatized procedure for S1RePE shaping. We applied this procedure in 14 healthy people and assessed the accuracy of the procedure by comparing the automatized S1RePE with that which was manually traced in individual brain 3D MRI.

Results: In all subjects, the automatic and manual procedures were highly consistent, with mean Euclidean distance of 2.3 mm and mean intra-class correlation 0.995.

Conclusion: We successfully developed an automatized procedure, which is simpler, more replicable and requires less time than the procedure used up to this point in shaping S1RePE. Significance: We provide an automatic procedure using the individual cerebral MRI exam to shape a tES personalized electrode that matches the individual cortical folding. This automatic procedure can be adapted to any cortical region in the case that a specific cortical sulcus demarcates it.


Automatic procedure; Individual Brain Magnetic Resonance Imaging (MRI); Personalized electrode; Primary somatosensory cortex; Transcranial Electrical Stimulation (TES)


Recent multidisciplinary neuroscientificwork has led to the parceling of the human cerebral cortex into a mosaic of several distinct areas. Advances in the analysis of ‘structural’ and ‘functional’ connectivity using powerful noninvasive neuroimaging methods are yielding intriguing insights about brain circuits, their variability across individuals, and their relationship to behavior. In parallel, neuromodulation techniques are emerging as promising tools in modifying the behavior and reaction of subjects to neurological and psychiatric damage. Neuromodulation refers to a class of non-invasive techniques capable of inducing changes in neuronal excitability – which is defined as the change in response to the same input - and includes two subgroups based on their respective stimulating mechanisms: transcranial magnetic stimulation (TMS) and transcranial electrical stimulation (tES) [1]. In the transcranial direct current stimulation (tDCS), which is a type of tES, low-intensity direct currents flow across two or more electrodes placed on the scalp. Applied for a few minutes, tDCS can induce neuronal excitability changes that persist for minutes to hours and, if repeated for days, can last weeks or months. The potential of selecting a specific regional target is a crucial step that requires the proper integration of ‘structural’ and ‘functional’ knowledge about the brain. We developed a procedure that personalizes the tES electrode to fit the individual cortical folding of the target area. We observed that the personalized electrode is more efficacious than one that is not personalized in its capacity to modify the neuronal excitability of the entire extended area via tES. We observed efficacy against multiple sclerosis (MS) fatigue when we utilized this electrode in a tDCS treatment aimed at compensating for the alterations typical of the network imbalances found in the brains of these patients. To be specific, we adapted a tDCS intervention, known to improve endurance to fatigue in healthy subjects, to fatigued people with MS [2]. We considered the following indications present in literature:

1) An impaired functional interplay between parietal sensory and frontal motor areas may be at the origin of MS fatigue, and tDCS is able to improve parieto-frontal functional connectivity.

2) Primary motor cortex (M1) is often too excitable in fatigued people with MS.

3) Primary somatosensory cortex (S1) displays signs of lower excitability in MS patients.

4) The symptoms in MS typically involve the lower as well as the upper limbs.

5) No evidence of mono hemispheric prevalence regarding MS fatigue currently exists.

Considering these notions together, we created a whole body bilateral S1 electrode to enhance the excitability of this area and sustain the S1-M1 projection without directly enhancing M1 excitability. The personalized whole body bilateral S1 electrode fits the personal S1 cortical folding using the individual brain MRI (S1RePE) [3-5].

Here, we present an automatized procedure that begins with brain magnetic resonance images(MRI) of each person, and then obtains/ produces/reveals his/her electrode shape, fitting his/her central sulcus projection on the scalp.



We included 14 volunteers (10 females, 4 males; age range 25-56 years), from whom we collected signed informed consent forms for participation in the study as approved by the Ethics Committee of ‘San Giovanni Calibita’ Fatebenefratelli Hospital. Each subject underwent a structural brain MRI exam with a 1.5 T scanner (Achieva, Philips Medical Systems, Best, The Netherlands) that provided a 33 mT/m gradient amplitude, online 2D/3D geometric distortion correction and a standard quadrature head coil. The acquisition protocol consisted of one 3D high-resolution anatomical sequence empirically optimized to increase grey/white matter image contrast (T1-weighted Turbo Field Echo TR/TE/FA=9.5 ms/4 ms/8°; 2562 matrix resulting in an inplane resolution 0.98 × 0.98 mm, slice thickness 1.2 mm, 160 coronal contiguous slice).

Automatic S1RePE procedure

The automatic process to shape the personalized S1 electrode (Figure 1) consisted of the following steps:

• On the standard MNI152_T1_1mm_brain MR template we traced the central sulcus manually selecting one point in the middle of the pre- and post-central sulcus walls in the 123 sagittal slices passing across the template central sulcus, resulting in a set of 123 points. These traced CS points span from the Sylvian sulcus of the left hemisphere to the same sulcus of the right hemisphere (MNI_CS);

• Scalp and brain tissues were segmented from individual original MRIs (iMRI) using the Brain Extraction Tool (BET) of FSL (iBrain and iScalp);

• iBrain images were spatially normalized in respect to the standard MNI152_T1_1mm_brain MR template by means of the FMRIB’s Linear Image Registration Tool (FLIRT) and the related transformation was saved as a matrix (TM);

• The 123 MNI_CS points were automatically mapped onto the iMRI of each subject using the inverted spatial normalization matrix [TM-1, convert xfm and img2img] to obtain the 123 points on iMRI (Automatic iCS);

• We projected the Automatic iCS onto the external surface of the 3D iScalp using a homemade software (Automatic iCSS).


Figure 1: Flowchart - Procedure to shape the personalized bilateral S1 electrode [S1RePE]: for greater clarity, we have included the legend and the color coding system within the flowchart.

S1RePE were made out of parallelograms of 2 cm in width, starting from Cz, and approximately the same length in the left and right hemispheres.

Evaluation of the automatic iCSS identification

To evaluate the ability of this automatic procedure to shape S1RePE, we compared the 123 Automatic iCSS points with those obtained by manually tracing the central sulcus on individual MRIs projected on the scalp (Fig. 1 right, Manual iCSS) [6-8].

Two independent researchers selected every sagittal image where the central sulcus appeared on the individual segmented brain and memorized one point (x,y,z) for each slice. Accordingly, the number of points of Manual iCSS varied across subjects between a minimum of 102 and a maximum of 117. We projected the Manual iCS onto the external surface of the 3D iScalp using the same software that was used for the Automatic procedure (Manual iCSS).

We quantified the accuracy of the Automatic iCSS identification as the point-to-point Euclidean distance to the Manual iCSS set and the Intra-Class Correlation (ICC) between Automatic iCSS and Manual iCSS [8-10] (Figure 2).


Figure 2: CS shape traced on iBrain and iScalp in Manual and Automatic S1RePE procedures. The personalized bilateral S1 electrode (S1RePE) obtained by Manual (upper row) or Automatic (lower row) procedure: the individual central sulcus, either traced manually in in individual brain MRI or retro-projected from MNI template traced once for all (first column), projected on the individual scalp (second column) to shape S1RePE (third column).


We verified that the distributions of the Euclidean distances and ICCs between Automatic iCSS and Manual iCSS did not differ from a Gaussian (Shapiro-Wilk test >.400 consistently). Thus, we calculated the individual average across the point-to-point distances of the two Manual and Automatic sets (about 102-117 points; Table 1). All subjects displayed a low Euclidean distance which resulted 2.3 mm in average, low varying intra-individually (mean standard deviation 2.2 mm). The high consistency of the two Automatic iCSS and Manual iCSS sets appeared in the high intra-class correlation ranging from 0.990 to 0.999, resulting 0.995 in average (Table 1).


The main achievement of our work is the newfound capacity, given the individual anatomical cerebral MRI, to produce personalized electrodes for transcranial electrical stimulation, which fit the individual cortical folding of the predetermined target, through an automatized procedure. We implemented all steps of the procedure according to widely used standards and well-tested software for the processing of standard magnetic resonance images. The main innovation is the identification of the individual central sulcus. We inversely transform in the individual brain MRI space the central sulcus identified once for all on the MNI template [11-15].

This automatized procedure offers multiple advantages with respect to the manual one:

1) A significant reduction of the electrode preparation execution time: in fact, while the central sulcus manual tracing requires 1-1.5 hours when done by an intermediate experienced operator, the present automatic procedure lasts about 10-15 minutes;

2) No need for the subject/patient to be present in the laboratory, thus avoiding a further trip to the treatment environment in addition to the tES sessions;

3) No need for a neuronavigation system to shape the electrode;

4) The reduction of the potential for inter-subject and intra subject variability in electrode shape as a result of variations in the expertise of the researcher or technician who conducts it.

As noted in the introduction, we developed the whole body bilateral S1 electrode personalization aimed at remedying the neuronal activity alterations underlying multiple sclerosis fatigue. A successful clinical study indicates that this issue deserves further attention. Electrode personalization is necessary when the target of stimulation is an extended region. In fact, through an experimental trial, in which we targeted bilateral M1 as a simple-to-test region by transcranial magnetic stimulation (TMS) protocol, we observed that the personalized electrode in particular, as opposed to a non-personalized one, induced an efficacious neuromodulation of the whole body representations in both hemispheres. In other terms, while neuromodulation of the lower limbs representation with both the personalized and non-personalized electrodes ensured the proper execution of the two stimulation blocks, proper neuromodulation of upper limb representations was achieved only through use of the personalized one. Thus, we conclude that the need for personalizing the electrode geometry emerges when we target an extended region, to the order of 5-10 cm from the centering point (in our case, hand representation from the central Cz position), as bilateral S1 or M1 areas devoted to the whole body representation [13].

A key step in the present procedure is the identification of the sulcus that demarks the target area on the MNI model, retro transforming it onto individual MRIs by the inversion of the matrix, which is calculated to normalize individual MRI space into the MNI model. We evaluated the accuracy of this procedure and observed errors to the order of 2-3 mm with respect to the manual tracing executed by two independent MRI analysis experts. This procedure can by simply exported to other extended cortical targets, such as most bilateral associative cortices. While, in the case of the central sulcus, our procedure proved to be very appropriate, for other more variable sulci, different brain normalization procedures that take into account all cortical folding should be evaluated. Furthermore, our procedure will be useful in cases where a more rounded shape region, like the dorsolateral prefrontal cortex – typical of many psychiatric and neurological interventions – is the target, but the neuromodulatory effects on nearby cortical regions must be limited. Definitely/Certainly, further investigation through tES studies - experimental and simulative, employing realistic head models - will enhance knowledge about the degree to which efficacy is dependent upon the reference electrode and personalized electrode positioning. In the present investigation, we used 1.5T 3D highresolution MRI cerebral images. In other tests performed, which we have not included in the present study due to their small number and lack of homogeneity, we developed the complete procedure starting from lower resolution images. This was done so that we could determine the minimal requirement to apply the proposed automatic procedure 3D anatomical MRI with voxels smaller than 5 mm of slice thickness and in-plane resolution better than 3 x 3 mm, as typical of clinical MRIs. The procedure does not require a predetermined direction of the exam, as we were able to obtain the personalized electrode starting from axial, sagittal and coronal acquired images. We decided to identify the transformation matrix as that which would normalize the individual brain to the MNI brain model (MNI152_T1_1mm_brain), but other templates may be used as well [15].


We provided an automatic procedure, which, from the individual cerebral MRI exam, produces the shape of the personalized electrode to target a neuromodulation intervention on whole body bilateral primary somatosensory cortex. We can simply export this process to any extended cortical region in the case that a specific cortical sulcus demarcates it.


The Authors are sincerely grateful to all people for the time and cooperation required to participate in the study and thank DomenicoLupoi, Massimiliano Marconi and Daniele Spizzichino for the support in collecting MRI.


Select your language of interest to view the total content in your interested language
Post your comment

Share This Article

Relevant Topics

Recommended Conferences

Article Usage

  • Total views: 7753
  • [From(publication date):
    March-2016 - Jun 28, 2017]
  • Breakdown by view type
  • HTML page views : 7711
  • PDF downloads :42

Post your comment

captcha   Reload  Can't read the image? click here to refresh

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version