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Commentary
Cells that encounter diverse stressful conditions such as hypoxia

and starvation undergo an evolutionarily conserved process called
autophagy [1,2]. Autophagy is a cellular degradative mechanism
whereby long-lived proteins and damaged organelles are sequestered
within intracytoplasmic double walled autophagosomes that fuse with
lysosomes where proteins and lipids are hydrolyzed into amino and
fatty acids that can provide energy in nutrient poor conditions [3]. The
importance of this cellular process has been established in different
physiological and pathological conditions such as aging,
neurodegenerative diseases and cancer [4-6]. In cancer in particular,
several studies have reported autophagy to exert a dual role, either
functioning as a pro-survival cell mechanism or as a pro-death
mechanism for cancer cells [7].

Many anti-cancer therapies such as DNA damaging agents,
radiation therapy and targeted therapies can induce autophagy in
cancer cells [8-10]. Recent studies have found that inhibition of
chemotherapy-induced autophagy can enhance the sensitivity of
cancer cells to different chemotherapies, leading to cell death and
tumor regression [8,11,12]. Based on these observations,
cytoprotective autophagy has received considerable attention because
of its potential clinical relevance in modulating drug resistance. In
contrast, autophagy also has a complex and incompletely understood
role as a cell death inducing mechanism. Given this paradox, the role
of autophagy in cancer remains unclear and is likely to be contextual,
varying with different agents and tumor types. Understanding the
mechanisms that underlie these two different effects of autophagy on
cancer cells could aid in developing more effective therapies.

Over the last decade, our group has extensively studied Aplasia Ras
homolog member I (ARHI; DIRAS3), a maternally imprinted gene,
which encodes a 26 kD GTPase with 50% homology to Ras, but with
an opposite function [13]. ARHI is downregulated in 60% of ovarian
cancers associated with decreased disease-free survival [13].
Upregulation of ARHI at physiologic levels inhibits cancer cell growth,
reduces motility and invasion, induces autophagy and establishes
dormancy [13,14]. A human xenograft model has been developed that
permits doxycycline-inducible expression of ARHI leading to tumor
dormancy where survival of ovarian cancer cells depends upon
autophagy. Recent studies point to the clinical relevance of this model
where more than 80% of cases of dormant, drug resistant ovarian
cancer found on the peritoneal surface at “second look” operations
after primary surgery and chemotherapy express high levels of ARHI
and are undergoing autophagy [15]. The article “ARHI (DIRAS3)-
mediated autophagy-associated cell death enhances chemosensitivity
to cisplatin in ovarian cancer cell lines and xenografts”, by Washington
et al. is of considerable interest, as it provides new insight into the
autophagic paradox and brings together several of the elements that
are relevant for the study of this process [15]. In this article, our group

explored mechanisms by which ARHI induces autophagic cell death
and enhances cisplatin cytotoxicity. We confirmed that cell
proliferation, autophagy and tumor dormancy can be regulated by
ARHI. In cell culture, ARHI-induced autophagy led to increased
cisplatin cytotoxicity and cell death, accompanied by induction of
ROS, activation of caspase 3, PARP cleavage and downregulation of the
anti-apoptotic proteins BCL2 and XIAP. In cell culture, treatment with
the autophagy inhibitor, chloroquine (CQ), decreased the cisplatin-
induced cytotoxicity. In xenografts, cisplatin treatment significantly
slowed the outgrowth of dormant autophagic cells after reduction of
ARHI. However, the addition of CQ to cisplatin did not further delay
outgrowth of dormant cancer cells [15]. This study suggests that ARHI
can induce autophagy-associated cell death in culture, but that this
may not be observed in vivo (Figure 1).

Figure 1: ARHI (DIRAS3) plays an important role in the regulation
of different steps of the process of autophagy and autophagosome
formation. ARHI inhibits mTOR by decreasing the PI3K signaling
pathway, leading to the induction of autophagosome formation.
ARHI prevent the binding of Beclin 1 with its negative regulator
BCL2, by disrupting Beclin homodimer. ARHI also affects the
elongation step by up-regulating Atg4. Autophagy can also be
induced by starvation conditions, Ionizing radiation and different
chemotherapeutic agents.

Autophagy inhibitors show a wide range of sensitization; in some
therapeutic settings or tumor models these inhibitors have only
minimal to modest effects but in other cases these inhibitors are
significantly effective[16]. Although hydroxychloroquine (HCQ), a
derivative of CQ, is currently being evaluated in clinical trials that
combine chemotherapeutic agents with HCQ, a major concern is that
that the high concentrations of HCQ that are required to block
autophagy in cell culture may be difficult to achieve and maintain in
patients [7,17]. The cytotoxic effects of CQ and HCQ on cancer cell
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death have been attributed to inhibition of autophagy. Recent studies,
however, have described different mechanisms by which CQ induces
cell death including promotion of cell cycle arrest, activation of ataxia
telangiectasia mutated (ATM), upregulation of TP53 and induction of
apoptosis [18-20]. New studies are underway to develop more potent
autophagy inhibitors [17]. Amaravadi et al. have developed a new
autophagy inhibitor, LYS05, with the potential to inhibit autophagy in
vivo with single agent anti-tumor activity. Different derivatives of this
agent are under investigation with the goal of identifying autophagy
inhibitors with nanomolar activity [17] (Figure 2).

Figure 2: Autiphagy can be induced by several factors including
ARHI, chemotherapeutic drugs, ionizing radiation, and oncogene
activation and starvation conditions. The degradation of the
cytoplasmic material generates amino acids and fatty acids which
provide nutrients and energy to sustain survival under stressful
conditions such as starvation. It can also promote cell death such as
necrosis/necroptosis, apoptosis and autosis. Furthermore, different
survival factors such as VEGF, IL-8 and IGFR found in tumor
microenvironment can rescue ovarian cells undergoing ARHI-
mediated autophagic cell death.

As mentioned above, autophagy not always has a cytoprotective
role. Excessive levels of autophagy have the potential to induce cell
death and some studies have shown that autophagy is necessary for the
cytotoxic effect of the therapy that is being tested [10,21]. Therefore,
autophagy inducers have also been considered as potential cancer
treatments [22,23]. Several mTOR inhibitors with anti-tumor activity
induce autophagy, including rapamycin and its analogs temsirolimus,
everolimus, and deforolimus [12]. These agents, however, affect many
cellular processes in addition to autophagy which may be responsible
for their ant-tumor activity [12]. Our group also studied the
contribution of the microenvironment in deciding the fate of
autophagy. Different survival factors such as VEGF, IL-8 and IGFR
found in the tumor microenvironment can rescue ovarian cancer cells
undergoing ARHI-mediated autophagic cell death in culture [13].
Treatment with specific monoclonal antibodies against each of these
survival factors prevent the outgrowth of autophagic cells, suggesting
that these factors contribute to determine the fate of autophagic cells

and that their inhibition could provide a novel strategy for eliminating
dormant ovarian cancer cells [13]. The question of whether to inhibit
or enhance autophagy to improve chemotherapeutic efficacy remains
to be resolved in different tumor types and different clinical settings.

In conclusion, the role of autophagy in modulating cancer cell
survival is still controversial. Identification of biomarkers that
delineate the role of autophagy in different malignancies is critical to
distinguish which patients will benefit from autophagy inhibition as
therapeutic approach. The insight gained from the study of
Washington et al. demonstrates that autophagy can enhance the
therapeutic activity of cisplatin, at least in cell culture. As ARHI is
downregulated in breast, lung, prostate, pancreatic, hepatic and
thyroid cancer, these observations may also apply autophagy and
chemotherapy in other types of cancers.
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