Bacteraemia Caused by *Kytococcus Schroeteri* in a Pneumonia Patient

Jihye Ha1,2, Keon-Han Kim1, Jung-Ok Kim1, Jun-Sung Hong3, Seok Hoon Jeong1,2* and Kyungwon Lee1

1Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea
2Department of Laboratory Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
3Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Korea

Abstract

The genus *Kytococcus* are pigmented, non-encapsulated, non-motile, aerobic, catalase-positive, Gram-positive cocci in pairs or tetrads. We report a case of *Kytococcus Schroeteri* isolated from a blood specimen of a patient with pneumonia. The isolate was Gram-variable and difficult to identify using conventional biochemical tests.

Keywords: *Kytococcus Schroeteri*; Gram-variable; 16S rDNA sequencing; Bacteraemia

Introduction

Kytococci are a part of the normal skin microflora of humans and can cause infections, particularly in patients with prosthetic devices or immunodeficiency. Due to insufficient identification methods and an intrinsic resistance to several β-lactams, infections due to *Kytococci* are a challenge to clinical microbiologists and clinicians [1]. Here, we report the first Korean case of bacteraemia due to *Kytococcus Schroeteri* in a patient with pneumonia.

Case Report

A 55-year-old man was admitted to a tertiary-care hospital in Seoul, Korea, for evaluation of fever and dyspnea. The patient had no history of hypertension or diabetes mellitus. The patient had been living in a sanatorium because of quadriplegia resulting from a cerebral infarction diagnosed at age 20 years. Laboratory tests showed a leukocyte count of 12.89 × 109/L (neutrophil 83.6%) and a C-reactive protein level of 156.0 mg/L (normal range, 0.1-6.0 mg/L). A chest X-ray showed a large amount of pleural effusion and marked peribronchovascular markings in the left lung. Percutaneous catheter drainage of the pleural effusion was performed, but the pleural fluid culture did not yield any bacterial growth. The predominant organism of sputum cultures was *α-Streptococcus* species, which is thought to be part of the normal flora.

A blood culture performed the day the patient was admitted showed Gram-positive cocci growth (isolate GNKS01) in an anaerobic blood culture vial, one of six total (three aerobic and three anaerobic).

Subculture of the blood culture fluid yielded small, slightly yellow-pigmented, convex, catalase-positive, and non-haemolytic colonies on 5% sheep blood agar after 24 h of incubation in 6% CO2 at 35°C. Routine Gram staining of the smeared preparation showed Gram-variable cocci in pairs or tetrads (Figure 1). However, the isolate appeared to be Gram-positive after shortening the destaining time from 3–4 sec to 1–2 sec. Morphologic evaluation using scanning electron microscopy (FE SEM S-800, Hitachi, Tokyo, Japan) showed spherical cells (1.0–1.5 μm in diameter) in pairs or tetrads (Figure 2).

Biochemical features were tested using the GP identification card with Vitek 2 system (bioMérieux, "Marcy-l’Étoile", France). However, the commercial card failed to identify the organism. Analysis using matrix-assisted laser desorption/ionization mass spectrometry (MALDI Biotyper, BrukerDaltonics, Bremen, Germany) also failed to identify the organism. 16S rDNA gene sequencing was performed with a universal bacteria primer set, 27F (5’- AGA GTT TGA TCC TGG CTC AG-3’) and 1541R (5’- AAG GAG GTG ATC CAG CCG CA-3’), using an automatic sequencer (ABI 3730xl, AB, Weiterstadt, Germany), and the partial 16S rDNA sequences of the isolate GNKS01 were 100% identical to those of DSM 13884T, the type strain of *K. Schroeteri* (GenBank Accession No. AJ977221.1), according to a BLAST search (http://blast.ncbi.nlm.nih.gov/).

Figure 1: Routine Gram staining of the isolate GNKS01 showed Gram-variable cocci in pairs or tetrads.

Figure 2: Electron micrograph of *K. Schroeteri* isolated from blood specimen. Magnification, 20,000X.

*Corresponding author: Seok Hoon Jeong, Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, 211 Eonju-ro, Gangnam-gu, Seoul 135-720, Korea, Tel: 82-2-2019-3532; E-mail: kscpsh@yuhs.ac

Received July 14, 2015; Accepted September 17, 2015; Published September 21, 2015

Copyright: © 2015 Ha J, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Antimicrobial susceptibility testing was performed with the disk diffusion method. Minimal inhibitory concentrations (MICs) of antimicrobials were determined with Etest strips (bioMérieux) on Mueller-Hinton agar (Asan Pharmaceutical, Seoul, Korea) following the guidelines of the Clinical and Laboratory Standards Institute [2]. The isolate GNKS01 exhibited similar antimicrobial susceptibility patterns to the type strain DSM 13884$^\text{t}$ (Table 1). However, the isolate GNKS01 was susceptible to erythromycin, while the type strain DSM 13884$^\text{t}$ was resistant.

The patient was treated with tazobactam and ciprofloxacin. He showed good clinical response, and symptoms and elevated inflammatory markers resolved after 10 days.

Discussion

The genus *Kytococcus* belongs to the family *Dermacoccaceae*, which is a part of the suborder *Micrococccinae* and the order Actinomycetales. The genus *Kytococcus* was separated from the genus *Micrococcus* based on phylogenetic (16S rRNA gene sequencing) and chemotaxonomic (menaquinone composition, peptidoglycan types, and cellular fatty acid composition) analysis in 1995 [3]. Kytococci are pigmented, non-encapsulated, non-motile, aerobic, catalase-positive, and Gram-positive cocci that appear in pairs or tetrads. The genus consists of three species: *Kytococcus sedentarius*, *Kytococcus aerolatus*, and *Kytococcus Schroeteri*. *K. sedentarius* is a normal saprophyte of the human skin but seldom causes human infections [4]. *K. aerolatus* was first identified from an indoor air sample and has never been reported to cause human infections [5]. *K. Schroeteri* was first described in 2002, isolated from blood cultures of a patient with prosthetic valve endocarditis and distinguished from *K. sedentarius* based on physiological tests and chemotaxonomic investigations [6]. Though *K. Schroeteri* is a part of the normal human skin flora, it causes systemic human infections associated with prosthetic devices and immunodeficiency. To date, *K. Schroeteri* has been identified as a human pathogen in 17 cases; prosthetic valve endocarditis was the most common clinical presentation (n=8) [6-13], followed by pneumonia (menaquinone composition, peptidoglycan types, and cellular fatty acid composition) analysis in 1995 [3]. Kytococci are pigmented, non-encapsulated, non-motile, aerobic, catalase-positive, and Gram-positive cocci that appear in pairs or tetrads. The genus consists of three species: *Kytococcus sedentarius*, *Kytococcus aerolatus*, and *Kytococcus Schroeteri*. *K. sedentarius* is a normal saprophyte of the human skin but seldom causes human infections [4]. *K. aerolatus* was first identified from an indoor air sample and has never been reported to cause human infections [5]. *K. Schroeteri* was first described in 2002, isolated from blood cultures of a patient with prosthetic valve endocarditis and distinguished from *K. sedentarius* based on physiological tests and chemotaxonomic investigations [6]. Though *K. Schroeteri* is a part of the normal human skin flora, it causes systemic human infections associated with prosthetic devices and immunodeficiency. To date, *K. Schroeteri* has been identified as a human pathogen in 17 cases; prosthetic valve endocarditis was the most common clinical presentation (n=8) [6-13], followed by pneumonia (n=2) [1,18], postoperative spondylodiscitis (n=1) [19], and implant-related septic arthritis (n=1) [20].

K. Schroeteri is a Gram-positive cocci; however, the isolate GNKS01 showed Gram-variable results in routine Gram staining. A former case report described a similar phenomenon in which identification was hampered because the microorganism was misidentified as Gram-negative cocci [1]. The authors attributed the cause of the abnormal Gram stain reaction to treatment with β-lactams or the inflamed tissue from which the *K. Schroeteri* was isolated [1]. However, when we performed routine Gram staining for the type strain DSM 13884$^\text{t}$, we also observed Gram-variable results. Thus, we assume that *K. Schroeteri* may have a property that allows it to be easily destained, which could result in its misinterpretation as Gram-negative cocci.

In this case report, *K. Schroeteri* GNKS01 was isolated from a blood specimen of a patient with pneumonia. However, the patient's pleural fluid did not yield any bacterial growth, and the sputum culture did not show any growth other than *α*-Streptococcus species. Given that the patient did not have any focal infections other than pneumonia, we consider the possibility that his bacteraemia originated from respiratory infection.

In summary, we report a case of *K. Schroeteri* bacteraemia successfully treated with tazobactam and ciprofloxacin in a patient with pneumonia. We found that Gram-staining results of *K. Schroeteri* can be easily misinterpreted as Gram-negative cocci. Additionally, identification of the *Kytococcus* spp. isolates using commercially available identification cards and MALDI-TOF MS systems was difficult, indicating the necessity of 16S rDNA gene sequencing.

Acknowledgements

This work was supported by the Research Program funded by the Korea Centers for Disease Control and Prevention (2014E4700200#).

References

<table>
<thead>
<tr>
<th>Antimicrobial agent</th>
<th>DDT</th>
<th>MIC (μg/ml)</th>
<th>GNKS01</th>
<th>DDT</th>
<th>MIC (μg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ampicillin</td>
<td>R</td>
<td>ND</td>
<td>R</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>Penicillin G</td>
<td>R</td>
<td>ND</td>
<td>R</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>Erythromycin</td>
<td>R</td>
<td>ND</td>
<td>S</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>Tetracycline</td>
<td>S</td>
<td>0.5</td>
<td>S</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td>Teicoplanin</td>
<td>S</td>
<td>ND</td>
<td>S</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>Vancomycin</td>
<td>S</td>
<td>0.125</td>
<td>S</td>
<td>0.094</td>
<td></td>
</tr>
<tr>
<td>Linezolid</td>
<td>S</td>
<td>ND</td>
<td>S</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>Tigecycline</td>
<td>S</td>
<td>0.094</td>
<td>S</td>
<td>0.094</td>
<td></td>
</tr>
<tr>
<td>Quinupristin/Dallopistin</td>
<td>S</td>
<td>ND</td>
<td>S</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>Tobramycin</td>
<td>I</td>
<td>ND</td>
<td>R</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>Amikacin</td>
<td>S</td>
<td>1.5</td>
<td>S</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Trimethoprim/sulfamethoxazole</td>
<td>S</td>
<td>0.125</td>
<td>S</td>
<td>0.125</td>
<td></td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>S</td>
<td>1</td>
<td>I</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Gentamicin</td>
<td>S</td>
<td>0.38</td>
<td>S</td>
<td>0.5</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviation : DDT, disk diffusion test; MICs, minimal inhibitory concentrations; S, susceptible; I, intermediate; R, resistant; ND, not done

*Table 1: Antimicrobial susceptibilities of the type strain DSM 13884$^\text{t}$ and the *K. Schroeteri* clinical isolate from blood culture as determined by the disk diffusion and the Etest.*

