Journal of

Balanced Folding Over a Polygon and Euler Numbers

EL-Kholy E* and El-Sharkawey E
Department of Mathematics, Faculty of Science, Tanta University, Tanta, Egypt

Abstract

In this paper we introduced a new folding over a polygon we called it balanced folding, then we proved that for a balanced folding of a simply connected surface M there is a subgroup of the group of all homeomorphisms of M that acts 1-transitively on the 2-cells of M. Also we explored the relationship between balanced folding and covering spaces. Finally we obtained a general relation of the Euler number of surfaces which may balance folded over a polygon and we also listed all the possibilities if M is a sphere balanced folded over a triangle and we gave the subgroup mentioned above in each case.

Keywords: Surface; Cellular folding; Singularities; Cayley color graph; 1-Transitive; Universal covering; Euler number

Introduction

Let K and L be cellular complexes and $f:|K| \rightarrow|L|$ a continuous map. Then $f: K \rightarrow L$ is a cellular map if
(i) for each cell $\sigma \in K, f(\sigma)$ is a cell in L,
(ii) $\operatorname{dim}(f(\sigma)) \leq \operatorname{dim}(\sigma),[1]$.

A cellular map $f: K \rightarrow L$ is a cellular folding iff
(i) for each i-cell $\sigma^{i} \in K, f\left(\sigma^{\prime}\right)$ is an i-cell in L, i.e., f maps i-cells to i-cells,
(ii) if σ contains n vertices, then $\overline{f(\sigma)}$ must contains n distinct vertices, [2].

A cellular folding $f: K \rightarrow L$ is neat if L^{n} - L^{n-1} consists of a single n-cell, interior L. The set of all cellular folding of K into L is denoted by $C(K$, L) and the set of all neat foldings of K into L by $\mathrm{N}(K, L)$.

If $f \in C(K, L)$, then $x \in K$ is said to be a singularity of f iff f is not a local homeomorphism at x. The set of all singularities of f corresponds to the "folds" of the map. This set associates a cell decomposition C_{f} of M. If M is a surface, then the edges and vertices of C_{f} form a graph Γ_{f} embedded in M [3].

Now there is a graph K_{f} associated to C_{f} in a natural way. In fact the vertices of K_{f} are just the n-cells of C_{ρ} and its edges are the ($n-1$)-cells. If $e \in C_{f}$ is $(n-1)$-cell, then e lies in the frontiers of exactly two n-cells σ, $\sigma /$. We then say that e is an edge in K_{f} with end points $\sigma, \sigma /$. The graph K_{f} can be realized as a graph \tilde{K}_{f} embedded in M as follows. For each n-cell σ, choose any point $\tilde{\sigma} \in \sigma$. If the n-cells $\sigma, \sigma /$ are end points of e, then we can join $\tilde{\sigma}$ to $\tilde{\sigma}^{\prime}$ by an arc \tilde{e} in M that runs from $\tilde{\sigma}$ through σ and σ^{\prime} to $\tilde{\sigma}^{\prime}$, crossing e transversely at a single point. Trivially, the correspondence $\sigma \rightarrow \tilde{\sigma}, e \rightarrow \tilde{e}$ is a graph isomorphism. Figure 1 illustrates this relationship in case $\mathrm{n}=2$.

It should be noted that the graph K_{f} may have more than one edge joining a given pair of vertices. For instance, consider the cellular folding f of the torus into itself with the cellular subdivision shown in Figure 2. The graph K_{f} has just two vertices but two edges, see Figure 2.

Balanced Folding

Definition 1: Let M be a compact connected surface, and P_{n} a cell complex having $n 0$-cells, n 1-cells and just one 2 -cell. Again a continuous map $f: M \rightarrow P_{n}$ is called neat folding if there is a cell decomposition C_{f} of M such that:
(i) f is a cellular map of C_{f} onto $C\left(P_{n}\right)$.
(ii) for each closed cell $\bar{\sigma}$ of $C_{f}, f \mid \bar{\sigma}$ is a homeomorphism of $\bar{\sigma}$ onto a closed cell of $C\left(P_{n}\right)$.

To avoid trivial cases, we require that that each 0 -cell of M is an end point of more than two 1 -cells. Thus the 0 -cells and 1 -cells of this decomposition form a finite graph Γ_{f} without loops (but possibly with multiple edges) and f folds M along the edges or 1-cells of $\Gamma_{f}[4]$.

Let $f: M \rightarrow P_{n}$ be a neat folding. Then for any n-cells A and B there is a homeomorphism $f_{A B}: A \rightarrow B$ given by $f_{A B}(a)=b$ iff $f(a)=f(b)$, where $a \in A$ and $b \in B$. We can always extend $f_{A B}$ to a homeomorphism, $\bar{f}_{A B}: \bar{A} \rightarrow \bar{B}$, but there need not exist an extensions to any open neighbourhoods of A and B. The following two examples explore this fact.

Example 1: Let M be a desk in the plane R^{2} with the cellular subdivisions shown in Figure 3. Let P_{4} be a desk with four 0-cells, four 1 -cells and one 2 -cell.

Define a map $f: M \rightarrow P_{4}$ by $f\left(\sigma_{i}\right)=\sigma, i=1,2, \ldots, 9$,

$$
\begin{aligned}
& f\left(e_{17}^{1}\right)=f\left(e_{3}^{1}\right)=f\left(e_{16}^{1}\right)=f\left(e_{2}^{1}\right)=f\left(e_{15}^{1}\right)=f\left(e_{1}^{1}\right)=\bar{e}_{1}^{1} \\
& f\left(e_{20}^{1}\right)=f\left(e_{13}^{1}\right)=f\left(e_{6}^{1}\right)=f\left(e_{18}^{1}\right)=f\left(e_{11}^{1}\right)=f\left(e_{4}^{1}\right)=\bar{e}_{2}^{1} \\
& f\left(e_{24}^{1}\right)=f\left(e_{23}^{1}\right)=f\left(e_{22}^{1}\right)=f\left(e_{10}^{1}\right)=f\left(e_{9}^{1}\right)=f\left(e_{8}^{1}\right)=\bar{e}_{3}^{1} \\
& f\left(e_{21}^{1}\right)=f\left(e_{14}^{1}\right)=f\left(e_{7}^{1}\right)=f\left(e_{19}^{1}\right)=f\left(e_{12}^{1}\right)=f\left(e_{5}^{1}\right)=\bar{e}_{4}^{1} \\
& f\left(e_{11}^{0}\right)=f\left(e_{3}^{0}\right)=f\left(e_{9}^{0}\right)=f\left(e_{1}^{0}\right)=\bar{e}_{1}^{0}, \\
& f\left(e_{12}^{0}\right)=f\left(e_{4}^{0}\right)=f\left(e_{10}^{0}\right)=f\left(e_{2}^{0}\right)=\bar{e}_{2}^{0} \\
& f\left(e_{15}^{0}\right)=f\left(e_{7}^{0}\right)=f\left(e_{13}^{0}\right)=f\left(e_{5}^{0}\right)=\bar{e}_{4}^{0} \text { and } \\
& f\left(e_{16}^{0}\right)=f\left(e_{8}^{0}\right)=f\left(e_{14}^{0}\right)=f\left(e_{6}^{0}\right)=\bar{e}_{3}^{0} .
\end{aligned}
$$

Let $A=\sigma_{4}, B=\sigma_{7}$ be the 2 -cells shaded in Figure 3. Then there is a homeomorphism $f_{A B}: A \rightarrow B$ given by $f_{A B}(x, y)=f\left(x^{\prime}, y^{\prime}\right)$ iff $f(x, y)=f\left(x^{\prime}, y^{\prime}\right)$

[^0]

Figure 1: Relationship in case $\mathrm{n}=2$.

Figure 2: Cellular subdivision.

Figure 3: Cellular subdivisions 2.
where $(x, y) \in A$ and $(x, y) \in B$. This homeomorphism has an extension to a homeomorphism $\bar{f}_{A B}: \bar{A} \rightarrow \bar{B}$ given by $\bar{f}_{A B}(x, y)=\left(x^{\prime}, y^{\prime}\right)$ iff $f(x, y)=f\left(x^{\prime}, y^{\prime}\right)$, where $(x, y) \in \bar{A}$ and $\left(x^{\prime}, y^{\prime}\right) \in \bar{B}$. Now consider any open neighbourhoods \tilde{A}, \tilde{B} of \bar{A}, \bar{B} respectively. We see that there is no extension of $\bar{f}_{A B}$ to a homeomorphism $\tilde{f}_{A B}: \tilde{A} \rightarrow \tilde{B}$. This is because three 1 -cells of A are interior to M, while two 1 -cells of B have this property.

Example 2: Let M be a sphere partitioned by the cells shown in Figure 4.

A cellular folding f may be defined from M to a polygon P_{3}. The vertices are labelled in such a way that vertices with the same image under f are labelled alike.

Now, it can be checked that a homeomorphism $f_{A B}: A \rightarrow B$, (where A and B are the 2-cells shaded in Figure 4) cannot be extended to a homeomorphism of any neighborhoods \tilde{A}, \tilde{B} of \bar{A}, \bar{B} respectively. This is because the valencies of the vertices of the 2 -cell A are $12,4,4$ while those of B are 12, $8,4$.

Definition 2: We will call a neat folding: $f: M \rightarrow P_{n}$ a balanced folding if for all 2-cells A, B and each homeomorphism $f_{A B}: A \rightarrow B$ given by $f_{A B}(a)=b$ iff $f(a)=f(b)$, we can extend $f_{A B}$ to a homeomorphism for any neighbourhoods \tilde{A}, \tilde{B} of \bar{A}, \bar{B} respectively.

We denote the set of all balanced foldings of M into P_{n} by $\boldsymbol{\beta}\left(M, P_{n}\right)$.
Example 3: Let M be a sphere partitioned by the cells shown in Figure 5. The valencies of the vertices of each 2-cells are 4,6 and 8.

A neat folding f may be defined from M to a polygon P_{3}. The vertices are labeled in such a way that vertices with the same image under f are labeled alike.

If we considered any 2-cells A and B of M (e.g. the shaded 2- cells in Figure 5) then, it can be checked that a homeomorphism $f_{A B}: A \rightarrow B$, (where A and B are the 2-cells shaded in Figure 5) can be extended to a homeomorphism of any neighborhoods \tilde{A}, \tilde{B} of \bar{A}, \bar{B} respectively. This is because the vertices of the 2 -cells A and B have the same valencies. It follows that f is balanced.

The Properties of the Graph K_{f} of Neat Folding

Let $\mathrm{f} \in \mathrm{N}\left(M, P_{n}\right)$, then K_{f} has the following special features.
(a) Edge coloring: Let $e_{1}, e_{2}, \ldots, e_{n}$ be the 1-cells of P_{n}, we can regard the indices $i, i=1,2, \ldots, n$ "colors". Each edge of K_{f} is mapped by f to one

of these. We may then give K_{f} an edge-coloring by assigning to each edge e of K_{f} the color i of its image $f(e)=e_{i}$.
(b) Sources and sinks: If A and B are 2-cells of M with a common 1 -cell in their frontiers, then A and B are given opposite orientations by f. It follows that each edge of the graph K_{f} may be oriented in such a way that every vertex is either a source or a sink (where a vertex u is a source if all the oriented edges with u as a vertex begin at u, and is a sink if all the edges end at w), see Figure 6. For such a graph, every circuit has an even number of edges (and hence of vertices).
(c) Regularity: If $f \in \mathrm{~N}\left(M, P_{n}\right)$, so that every 2 -cell of M is mapped homeomorphically by f onto interior P_{n}, then the graph K_{f} is regular. This follows immediately from the fact that the 1-cells in the frontier of each 2-cell is 1-1 correspondence under f with those of P_{n}. It is also worth observing that every color i occurs once in the set of colored edges at each vertex of K_{f} Consequently, the valency of each vertex of K_{f} is the cardinality of the set of 1-cells of P_{n}, that is to say, of the set of colors.

The properties of the graph K_{f} we have already discussed suggest that in certain cases the graph K_{f} may be a Cayley color graph. In the following we can show that this is indeed the case for a large class of balanced foldings.

Note first that, for any map $f: M \rightarrow N$, we can associate a group $G(f)$ namely the group of all homeomorphisms $h: M \rightarrow M$ such that foh=f. In case $f \in \mathrm{~N}\left(M, P_{n}\right)$, we may ask whether the induced action of $G(f)$ on the 2 -cells of M is transitive. In particular, we ask whether there is a subgroup $H(f)$ of $G(f)$ that acts 1-transitively on the set of 2-cells.

The Action of the Group of Homeorphisms on the 2-Cells

Theorem 1: Let M be a simply connected surface, $f: M \rightarrow P_{n}$ be a balanced folding then there is a subgroup $H(f)$ of $G(f)$ that acts 1transitively on the set of 2 -cells of M. Moreover K_{f} is a Cayley color graph of the group $H(f)$.

Proof: Let $f \in \boldsymbol{\beta}\left(M, P_{n}\right)$. Let A, B be 2 -cells of the cell decomposition of M associated by f. Then $f_{A B}: A \rightarrow B$ extends to a homeomorphism $\tilde{f}_{A B}: \tilde{A} \rightarrow \tilde{B}$, where \tilde{A} and \tilde{B} are open neighborhoods of A and B respectively.

Now let C be a 2 -cell such that $C \neq A$ and $C \cap \tilde{A} \neq \varphi$. Let $\tilde{f}_{A B}(C) \subset D$. Then there are open neighborhoods \tilde{C} and \tilde{D} of C and D such that $f_{C D}$ extends to a homeomorphism $\tilde{f}_{C D}: \tilde{C} \rightarrow \tilde{D}$, where $\tilde{f}_{C D}$ and $\tilde{f}_{A B}$ agree on $\tilde{A} \cap \tilde{C}$. Iterate this procedure to extend $f_{A B}$ to a map $F_{A B}: M \rightarrow M$.

The existence and uniqueness of this extension are guaranteed by the fact that M is 1 -connected.

Now, to prove that $F_{A B}$ is onto, let $y \in M$ a non-singular point.
Then y belongs to a 2 -cell σ. Let $B_{1}, B_{2}, \ldots, B_{k+1}=\sigma$, be a sequence of 2 -cells such that B_{i}, B_{i+1} are contiguous, $i=1,2, \ldots, k$. The sequence B_{1},
source

sink
Figure 6: The oriented edges.
B_{2}, \ldots, B_{k+1} of 2-cells is the image under $F_{A B}$ of a unique sequence A_{1}, $A_{2}, \ldots, A_{k+1}=\sigma^{\prime}$ of 2-cells such that A_{i}, A_{i+1} are contiguous, $i=1,2, \ldots, k$ and each $F_{A_{i} B_{i}}: A_{i} \rightarrow B_{i}$ extends to a homeomorphism $\tilde{F}_{A, B_{i}}: \tilde{A}_{i} \rightarrow \tilde{B}_{i}$ where $\tilde{F}_{A, B_{i}}$ and $\tilde{F}_{A_{i+1} B_{i+1}}$ agree on $\tilde{A}_{i} \cap \tilde{A}_{i+1}$. Hence $F_{A B}$ is onto.

We have now shown that $F_{A B}$ is a local homeomorphism of the simply connected manifold M onto itself. In fact, $F_{A B}$ is a covering map. Thus $F_{A B}$ is a homeomorphism.

The set of all such homeomorphisms is the required group $H(f)$, which by its construction acts 1 - transitively on the set of 2-cells.

The relationship of $H(f)$ to the graph K_{f} is as follows:
Choose some 2-cells A. Thus A is a vertex of K_{f} Identify any other vertex (2-cell) B of K_{f} with the unique element $F_{A B}$ of $H(f)$ such that $F_{A B}(A)=B$.

It follows trivially that the graph K_{f} is a Cayley color graph of $H(f)$, with generators $f_{B}=f_{A B}$, where B runs through the set of 2 -cells $B \neq A$ having a 1 -cell in its common frontier with A.

Note that in general any neat folding f of a surface M to a surface N, the set of singularity forms the edges and vertices of a graph Γ_{f}. If f is balanced, then the valencies of the vertices are invariant under any of the extended homeomorphisms $\tilde{F}_{A B}$. In particular, if $f \in \mathrm{~N}\left(M, P_{n}\right)$ be such that Γ_{f} is a regular graph embedded in M, then $f \in \beta\left(M, P_{n}\right)$. Moreover, if M is simply connected, then $H(f)$ will acts 1-transitively on the set of 2-cells of M and K_{f} will be a Cayley color graph of the group $H(f)$.

Example 4: Let $M=S^{2}=\left\{x \in R^{3}:\|x\|=1\right\}$, be the unit sphere in the Euclidean 3-space. Let $f: M \rightarrow M$, be given by $f(x, y, z)=(|x|,|y|,|z|)$.Then f is a neat folding and the graph Γ_{f} is a regular graph of valency 4 , with 6 vertices, twelve 1 -cells and eight 2 -cells. The image is the positive octant P_{3} where $x \geq 0, y \geq 0, z \geq 0$ see Figure 7a. Since Γ_{f} is a regular graph, it follows that f is a balanced folding and the graph, which is a Cayley color graph, has the form given in Figure 7b. Hence $H(f)$ is isomorphic to $Z_{2} \times Z_{2} \times Z_{2}$ and it acts 1-transitively on the set of eight 2-cells A_{1}, A_{2}, \ldots, A_{8}.

We now explore the relationship between balanced foldings and covering maps.

Theorem 2: Let $f \in \mathrm{~N}\left(M, P_{n}\right)$, and let $p: \tilde{M} \rightarrow M$ be the universal covering. Suppose that
$\tilde{f}=f o p \in \beta\left(\tilde{M}, P_{n}\right)$ and that $G(p) \triangleleft H(\tilde{f})$. Then there is a subgroup $H(f)$ of $G(f)$, isomorphic to $H(\tilde{f}) / G(p)$, acting 1-transitively on the set of 2-cell of M by f.

Proof: We first construct the group $H(f)$. Let $\tilde{h} \in H(\tilde{f})$, we now show that \tilde{h} covers a (unique) homeomorphism $h: M \rightarrow M$, i.e. hop $=p o \tilde{h}$. Let $a \in M$, and let $\tilde{a} \in p^{-1}(a)$. Put $b=p(\tilde{b})$, where $\tilde{b}=\tilde{h}(\tilde{a})$. The point b is independent of the choice of $\tilde{a} \in p^{-1}(a)$. For if $p(\tilde{c})=a$, and $p(\tilde{d})=d$ where $\tilde{d}=\tilde{h}(\tilde{c})$, then there is an element $g \in G(p)$ such that $g(\tilde{a})=\tilde{c}$. Consider $g^{\prime}=\tilde{h} o g o \tilde{h}^{-1}$. Then $g^{\prime}(\tilde{b})=\tilde{d}$. Since $G(p) \triangleleft H(\tilde{f}), g^{\prime} \in G(p)$. Thus $b=p(\tilde{b})=p(\tilde{d})=d$.

Now, define $h: M \rightarrow M$ by $h(a)=b$. Then h is a homeomorphism of M, and, trivially, the set $H(f)=\{h: \tilde{h} \in H(\tilde{f})\}$ is a subgroup of $G(f)$ isomorphic to $H(\tilde{f}) / G(p)$. Thus there is an epimorphism $\theta: H(\tilde{f}) \rightarrow H(f)$ given by $\theta(\tilde{h})=h$.

Secondly, we show that $H(f)$ acts 1 -transitively on the set of 2-cells of M by f. Let A, B be 2 -cells of M by f. Then there are 2 -cells \tilde{A} and \tilde{B} of \tilde{M} by \tilde{f} such that $p(\tilde{A})=A$ and $p(\tilde{B})=B$. Let \tilde{h} be the unique

Figure 7: Cayley color graph.
element of $H(\tilde{f})$ such that $\tilde{h}(\tilde{A})=\tilde{B}$ and let $h=\theta(\tilde{h})$. Then $h(A)=B$, and there is only one such element of $H(f)$.

It should be noted that if $p: \tilde{M} \rightarrow M_{\tilde{M}}$ is a covering map, and $\tilde{f}=f o p$, where $f \in \mathrm{~N}\left(M, P_{n}\right)$, then $\tilde{f} \in \beta\left(\tilde{M}, P_{n}\right)$ implies that $f \in \beta(M$, P_{n}.

Example 5: Let $M=P_{n}(R)$ be the real projective, n -space, and let P_{n} be the n-polygon $\left\{t \in R^{n+1}: \sum_{i=1}^{n+1} t_{i}=1,0 \leq t_{i} \leq 1\right\}$. Define $f: M \rightarrow P_{n}$ by $f(\{x\})=\left(\left|x_{1}\right|, \ldots,\left|x_{n+1}\right|\right) /\|x\|$. Then \check{M} may be identified with S^{n}, and $p: \breve{M} \longrightarrow M$ is given by $p(x)=\{x\}$. In this case $G(p) \cong Z_{2}$ is generated by the map $g: S^{n} \rightarrow S^{n}, g(x)=-x$ and $H(\bar{f}) \cong\left(Z_{2}\right)^{n+1}$ is generated by the reflexions $g_{i}: R^{n+1} \rightarrow R^{n+1}, g_{i}\left(x_{1}, \ldots, x_{n+1}\right)=\left(x_{1}, \ldots, x_{i-1},-x_{i}, x_{i+1}, \ldots, x_{n+1}\right)$ and $\bar{f}(x)=($ fop $)(x)=\left(\left|x_{1}\right|, \ldots,\left|x_{n+1}\right|\right) /\|x\|$ as above.

Theorem 3: Let \tilde{f} and f be as in Theorem 1 such that $G(p) \triangleleft H(\tilde{f})$. Let γ : $L \rightarrow M$ be a regular covering. Then $H(g)$, where $g=f o \gamma$, acts 1 -transitively on the set of 2-cells of L by g.

Proof: Since M is simply connected, for any other covering map $\gamma: L \rightarrow M$ there exists a universal covering map $h: \bar{M} \rightarrow L$ such that yoh $=p$ (Figure 8).

Now $G(p) \cong \Pi_{1}(M)$ and $G(h) \cong \Pi_{1}(L)$. Since $\gamma: L \rightarrow M$ is regular $\gamma_{*} \Pi_{1}(L, y) \triangleleft \Pi_{1}(M, x)$, where $\gamma(y)=x$. There is isomorphism $\Phi: G(p) \rightarrow$ $\Pi_{1}(M)$ and $\Psi: G(h) \rightarrow \Pi_{1}(L)$ such that following diagram is commutative (Figure 9).

It follows from elementary group theory that, since $\Pi_{1}(L)$ is embedded in $\Pi_{1}(M)$ as a normal subgroup, then $G(h)$ is embedded by α in $G(p)$ as a normal subgroup. But $G(p) \triangleleft H(\tilde{f})$ by assumption. Hence $G(h) \triangleleft H(\tilde{f})$ and Theorem 2 can be applied for g, yielding that $G(g)=H(\tilde{f}) / G(h)$ acts 1-transitively on the set of 2-cells of L by g.

Euler Numbers of Balanced Folding onto a Polygon

General considerations

Let $f \in \mathrm{~N}(M, N)$, where M and N are surfaces. To avoid too many complications, let us suppose that M is compact, connected and without boundary, and let N be connected.

Since M is compact the graph Γ_{f} is a finite graph. Let Γ_{f} divides M into $k 2$-cells, or faces, $A_{1}, A_{2}, \ldots, A_{k}$. In this case $f \mid A_{i} i=1, \ldots, k$ is a homeomorphism onto the interior of N.

We can triangulate N by a simplicial complex T_{N} such that every vertex of the cell decomposition C_{f} of ∂N is a vertex of T_{N}. Let T_{M} be the triangulation of M induced by f.

Consider the faces A_{1}, \ldots, A_{k} and their closures B_{1}, \ldots, B_{k}. Thus
$e\left(B_{i}\right)=e(N), i=1, \ldots, k$, where $e(X)$ is the Euler number of X. If we now calculate the Euler number $e(M)$ of M using the triangulation T_{N}, then we can compare $e(M)$ with $\sum_{i=1}^{k} e\left(B_{i}\right)=k e(N)$. We note that for each vertex of Γ_{f} with valency v exactly v vertices have been counted in the calculation of the Euler number $k e(N)$ of the disjoint union of B_{1}, \ldots, B_{n}. Likewise, every edge of Γ_{f} appears twice in these calculations. Figure 10 which shows the neighborhood of a vertex with valency 4, may help to clarify these remarks.

Thus to obtain $e(M)$ from $\sum_{i=1}^{k} e\left(B_{i}\right)$ we must subtract $(v-1)$ for each vertex of Γ_{f} (of valency v) and add the number of edges of Γ_{f}. The first of these is $V-n k$, where V is the number of vertices of Γ_{f}, and n is the number of vertices of ∂N. The second is equal to $\frac{n k}{2}$. We conclude that:

$$
\begin{equation*}
e(M)=k e(N)+V-\frac{n k}{2} \tag{1}
\end{equation*}
$$

The case in which N is the disc $D^{2}, e(N)=1$ and each 2-cell A of M is homeomorphic to D^{2}. Thus equation (1) now reduces to

$$
\begin{equation*}
2 e(M)=k(2-n)+2 V \tag{2}
\end{equation*}
$$

Figure 8: Universal covering map.

Figure 9: Universal covering map 2.

Figure 10: Neighborhood of a vertex with valency 4.

$\boldsymbol{q}_{\mathbf{1}}$	$\boldsymbol{q}_{\mathbf{2}}$	$\boldsymbol{q}_{\mathbf{3}}$	\boldsymbol{k}	$\boldsymbol{H}(\boldsymbol{f})$
2	2	$p, p>1$	$4 p$	$\mathrm{D}_{2 \boldsymbol{n}}$
2	3	3	24	O
2	3	4	48	\bar{O}
2	3	5	120	$\overline{\mathrm{~T}}$

Table 1: Possibilities list.

Figure 11: Triangulation.

Balanced folding over a polygon

Equations (1) and (2) can be refined slightly when f is balanced. In this case, if we label the vertices of the polygon $P n$ as $V_{1}, \ldots, V n$, then each vertex in the set $f^{-1}(V j)$ has the same valency $2 q_{j} j=1, \ldots, n$.

It follows that $f^{-1}(V j)$ contains $\frac{k}{2 q_{j}}$ elements. Thus the number of
tices of Γ_{f} is: vertices of Γ_{f} is:

$$
\begin{equation*}
V=\frac{k}{2} \sum_{j=1}^{n} \frac{1}{q_{j}} \tag{3}
\end{equation*}
$$

Hence for a balanced folding over a disc, equation (3) may be reduced to

$$
\begin{equation*}
2 e(M)=k(2-n)+k \sum_{j=1}^{n} \frac{1}{q_{j}}=k\left\{(2-n)+\sum_{j=1}^{n} \frac{1}{q_{j}}\right\} \tag{4}
\end{equation*}
$$

Certain cases of equation (4) are of special interest. For instance, let $n=3$, so that M is triangulated by Γ_{ρ} and equation (4) becomes
$2 e(M)=k\left\{\frac{1}{q_{1}}+\frac{1}{q_{2}}+\frac{1}{q_{3}}-1\right\}_{1}$
Thus if M is a sphere, then $\frac{1}{q_{1}}+\frac{1}{q_{2}}+\frac{1}{q_{3}}>1$ and $k \geq 4$. The only possibilities are listed in the following Table 1:

The group $H(f)$ associated with f according to Theorem 1 is shown in column5, and the corresponding triangulation of S^{2} are shown in Figures 11a-11d. Note that in Figure 11d we have drawn only one side. The vertices are labeled in such a way that vertices with the same image under f are labelled alike.

References

1. Kinsey LC (1993) Topology of surfaces. Springer, New York, USA.
2. El-Kholy E, Shahin RM (1998) Cellular folding. J Inst Math and Comp Sci 11: 177-181.
3. Robertson SA, El-Kholy E (1986) Topological foldings. Commun Fac Sci Univ Ank Ser 35: 101-107.
4. Farran HR, El-Kholy E, Robertson SA (1996) Folding a surface to a polygon. Geometriae Dedicata 63: 255-266.

[^0]: *Corresponding author: EL-Kholy E, Department of Mathematics, Faculty of Science, Tanta University, Tanta, Egypt, Tel: +20403344352; E-mail: entsar.elkholy@yahoo.com

 Received March 23, 2016; Accepted April 06, 2016; Published April 12, 2016
 Citation: EL-Kholy E, El-Sharkawey E (2016) Balanced Folding Over a Polygon and Euler Numbers. J Appl Computat Math 5: 296. doi:10.4172/2168-9679.1000296
 Copyright: © 2016 EL-Kholy E, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

