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Introduction
Let K and L be cellular complexes and : →f K L  a continuous 

map. Then f: K →L is a cellular map if

(i) for each cell σ ∈ K, f (σ) is a cell in L,

(ii) dim (f (σ)) ≤ dim(σ), [1].

A cellular map f: K→L is a cellular folding iff

(i) for each i-cell σi∈K, f(σi) is an i-cell in L , i.e., f maps i-cells to
i-cells,

(ii) if σ  contains n vertices, then ( )σf  must contains n distinct
vertices, [2].

A cellular folding f: K→L is neat if Ln - Ln-1 consists of a single n-cell, 
interior L. The set of all cellular folding of K into L is denoted by C(K, 
L) and the set of all neat foldings of K into L by Ɲ(K, L).

If f ∈ C(K, L), then x∈K is said to be a singularity of f iff f is not a
local homeomorphism at x. The set of all singularities of f corresponds 
to the "folds" of the map. This set associates a cell decomposition Cf of 
M. If M is a surface, then the edges and vertices of Cf form a graph Γf
embedded in M [3].

Now there is a graph Kf associated to Cf in a natural way. In fact the 
vertices of Kf are just the n-cells of Cf, and its edges are the (n-1)-cells. 
If e∈Cf is (n-1)-cell, then e lies in the frontiers of exactly two n-cells σ, 
σ/. We then say that e is an edge in Kf with end points σ, σ/. The graph 
Kf can be realized as a graph  fK  embedded in M as follows. For each
n-cell σ, choose any point σ σ∈ . If the n-cells σ, σ/ are end points of e,
then we can join σ  to σ ′  by an arc e  in M that runs from σ  through 
σ and σ' to σ ′ , crossing e transversely at a single point. Trivially, the
correspondence σ σ→  , → e e  is a graph isomorphism. Figure 1
illustrates this relationship in case n=2.

It should be noted that the graph Kf may have more than one edge 
joining a given pair of vertices. For instance, consider the cellular 
folding f of the torus into itself with the cellular subdivision shown in 
Figure 2. The graph Kf has just two vertices but two edges, see Figure 2.

Balanced Folding
Definition 1: Let M be a compact connected surface, and Pn a 

cell complex having n 0-cells, n 1-cells and just one 2-cell. Again 
a continuous map f: M→Pn is called neat folding if there is a cell 
decomposition Cf of M such that:

(i) f is a cellular map of Cf onto C(Pn).

(ii) for each closed cell σ  of Cf , σf  is a homeomorphism of σ
onto a closed cell of C(Pn).

To avoid trivial cases, we require that that each 0-cell of M is an 
end point of more than two 1-cells. Thus the 0-cells and 1-cells of this 
decomposition form a finite graph Γf without loops (but possibly with 
multiple edges) and f folds M along the edges or 1-cells of Γf [4].

Let f: M→Pn be a neat folding. Then for any n-cells A and B there is 
a homeomorphism fAB: A → B given by fAB(a)=b iff f(a)=f(b), where a∈A 
and b∈B. We can always extend fAB to a homeomorphism, 

__

: →ABf A B
, but there need not exist an extensions to any open neighbourhoods of 
A and B. The following two examples explore this fact.

Example 1: Let M be a desk in the plane R2 with the cellular 
subdivisions shown in Figure 3. Let P4 be a desk with four 0-cells, four 
1-cells and one 2-cell.

Define a map f: M→P4 by f(σi)=σ, i=1, 2, …,9,
1 1 1 1 1 1 1
17 3 16 2 15 1 1( ) ( ) ( ) ( ) ( ) ( )= = = = = =f e f e f e f e f e f e e
1 1 1 1 1 1 1
20 13 6 18 11 4 2( ) ( ) ( ) ( ) ( ) ( )= = = = = =f e f e f e f e f e f e e
1 1 1 1 1 1 1
24 23 22 10 9 8 3( ) ( ) ( ) ( ) ( ) ( )= = = = = =f e f e f e f e f e f e e
1 1 1 1 1 1 1
21 14 7 19 12 5 4( ) ( ) ( ) ( ) ( ) ( )= = = = = =f e f e f e f e f e f e e
0 0 0 0 0
11 3 9 1 1( ) ( ) ( ) ( )= = = =f e f e f e f e e , 
0 0 0 0 0
12 4 10 2 2( ) ( ) ( ) ( )= = = =f e f e f e f e e
0 0 0 0 0
15 7 13 5 4( ) ( ) ( ) ( )= = = =f e f e f e f e e  and
0 0 0 0 0
16 8 14 6 3( ) ( ) ( ) ( )= = = =f e f e f e f e e .

Let A=σ4, B=σ7 be the 2-cells shaded in Figure 3. Then there is a 
homeomorphism fAB: A → B given by fAB(x,y)=f(x′,y′) iff f(x,y)=f(x′,y′) 
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Abstract
In this paper we introduced a new folding over a polygon we called it balanced folding, then we proved that for 

a balanced folding of a simply connected surface M there is a subgroup of the group of all homeomorphisms of M 
that acts 1-transitively on the 2-cells of M. Also we explored the relationship between balanced folding and covering 
spaces. Finally we obtained a general relation of the Euler number of surfaces which may balance folded over a 
polygon and we also listed all the possibilities if M is a sphere balanced folded over a triangle and we gave the 
subgroup mentioned above in each case.
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where (x,y)∈A and (x,y)∈B. This homeomorphism has an extension 
to a homeomorphism : →ABf A B  given by ( , ) ( , )′ ′=ABf x y x y  iff 
f(x,y)=f(x′,y′), where ( , )∈x y A  and ( , )′ ′ ∈x y B . Now consider any 

open neighbourhoods , A B  of ,A B respectively. We see that there 
is no extension of ABf  to a homeomorphism : →  

ABf A B . This is 
because three 1-cells of A are interior to M, while two 1-cells of B have 
this property.

Example 2: Let M be a sphere partitioned by the cells shown in 
Figure 4.

A cellular folding f may be defined from M to a polygon P3. The 
vertices are labelled in such a way that vertices with the same image 
under f are labelled alike.

Now, it can be checked that a homeomorphism fAB: A → B, (where 
A and B are the 2-cells shaded in Figure 4) cannot be extended to a 
homeomorphism of any neighborhoods , A B  of ,A B  respectively. 
This is because the valencies of the vertices of the 2-cell A are 12, 4, 4 
while those of B are 12, 8, 4.

Definition 2: We will call a neat folding: f: M → Pn a balanced 
folding if for all 2-cells A, B and each homeomorphism fAB: A → B given 
by fAB(a)=b iff f(a)=f(b), we can extend fAB to a homeomorphism for any 

neighbourhoods A , B  of ,A B  respectively.

We denote the set of all balanced foldings of M into Pn by ẞ(M, Pn).

Example 3: Let M be a sphere partitioned by the cells shown in 
Figure 5. The valencies of the vertices of each 2-cells are 4, 6 and 8.

A neat folding f may be defined from M to a polygon P3. The vertices 
are labeled in such a way that vertices with the same image under f are 
labeled alike.

If we considered any 2-cells A and B of M (e.g. the shaded 2- cells 
in Figure 5) then, it can be checked that a homeomorphism fAB: A → B, 
(where A and B are the 2-cells shaded in Figure 5) can be extended to 
a homeomorphism of any neighborhoods , A B  of ,A B  respectively. 
This is because the vertices of the 2-cells A and B have the same 
valencies. It follows that f is balanced.

The Properties of the Graph Kf of Neat Folding
Let f∈ Ɲ(M, Pn), then Kf has the following special features.

(a) Edge coloring: Let e1, e2,…, en be the 1-cells of Pn, we can regard 
the indices i, i=1, 2,…, n "colors". Each edge of Kf is mapped by f to one 

Figure 1: Relationship in case n=2.

Figure 2: Cellular subdivision.

Figure 3: Cellular subdivisions 2.

Figure 4: Sphere partitioned by the cells.

Figure 5: Sphere partitioned by the cells 2.
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of these. We may then give Kf an edge-coloring by assigning to each 
edge e of Kf the color i of its image f(e)=ei.

(b) Sources and sinks: If A and B are 2-cells of M with a common 
1-cell in their frontiers, then A and B are given opposite orientations by 
f. It follows that each edge of the graph Kf may be oriented in such a way 
that every vertex is either a source or a sink (where a vertex u is a source 
if all the oriented edges with u as a vertex begin at u, and is a sink if all 
the edges end at w), see Figure 6. For such a graph, every circuit has an 
even number of edges (and hence of vertices).

(c) Regularity: If f∈ Ɲ(M, Pn), so that every 2-cell of M is mapped 
homeomorphically by f onto interior Pn, then the graph Kf is regular. 
This follows immediately from the fact that the 1-cells in the frontier 
of each 2-cell is 1-1 correspondence under f with those of Pn. It is also 
worth observing that every color i occurs once in the set of colored 
edges at each vertex of Kf. Consequently, the valency of each vertex of 
Kf is the cardinality of the set of 1-cells of Pn, that is to say, of the set of 
colors.

The properties of the graph Kf we have already discussed suggest 
that in certain cases the graph Kf may be a Cayley color graph. In the 
following we can show that this is indeed the case for a large class of 
balanced foldings.

Note first that, for any map f: M → N, we can associate a group G(f) 
namely the group of all homeomorphisms h: M → M such that foh=f. 
In case f∈ Ɲ(M, Pn), we may ask whether the induced action of G(f) on 
the 2-cells of M is transitive. In particular, we ask whether there is a 
subgroup H(f) of G(f) that acts 1-transitively on the set of 2-cells.

The Action of the Group of Homeorphisms on the 
2-Cells

Theorem 1: Let M be a simply connected surface, f: M → Pn be 
a balanced folding then there is a subgroup H(f) of G(f) that acts 1- 
transitively on the set of 2-cells of M. Moreover Kf is a Cayley color 
graph of the group H(f).

Proof: Let f∈ẞ(M, Pn). Let A, B be 2-cells of the cell decomposition 
of M associated by f. Then fAB: A → B extends to a homeomorphism 

: →  

ABf A B , where A  and B  are open neighborhoods of A and B 
respectively.

Now let C be a 2-cell such that C≠A and ϕ≠C A . Let 
( ) ⊂

ABf C D . Then there are open neighborhoods C  and D  of C and 
D such that fCD extends to a homeomorphism : →  

CDf C D , where CDf  
and ABf  agree on  

A C . Iterate this procedure to extend fAB to a map 
FAB: M → M.

The existence and uniqueness of this extension are guaranteed by 
the fact that M is 1-connected.

Now, to prove that FAB is onto, let y ∈M a non-singular point.

Then y belongs to a 2-cell σ. Let B1, B2,…, Bk+1=σ , be a sequence of 
2-cells such that Bi, Bi+1 are contiguous, i=1, 2, …, k. The sequence B1, 

B2,…, Bk+1 of 2-cells is the image under FAB of a unique sequence A1, 
A2,…, Ak+1=σ′ of 2-cells such that Ai, Ai+1 are contiguous, i=1, 2,…, k 
and each : →

i iA B i iF A B  extends to a homeomorphism : → 

i iA B i iF A B  
where 

i iA BF  and 
1 1+ +



i iA BF  agree on 1+
 

i iA A . Hence FAB is onto.

We have now shown that FAB is a local homeomorphism of the 
simply connected manifold M onto itself. In fact, FAB is a covering map. 
Thus FAB is a homeomorphism. 

The set of all such homeomorphisms is the required group H(f), 
which by its construction acts 1- transitively on the set of 2-cells.

The relationship of H(f) to the graph Kf is as follows:

Choose some 2-cells A. Thus A is a vertex of Kf. Identify any other 
vertex (2-cell) B of Kf with the unique element FAB of H(f) such that 
FAB(A)=B.

It follows trivially that the graph Kf is a Cayley color graph of H(f), 
with generators fB=fAB, where B runs through the set of 2-cells B ≠ A 
having a 1-cell in its common frontier with A.

Note that in general any neat folding f of a surface M to a surface 
N, the set of singularity forms the edges and vertices of a graph Γf . If f 
is balanced, then the valencies of the vertices are invariant under any 
of the extended homeomorphisms ABF . In particular, if f∈Ɲ(M, Pn) 
be such that Γf is a regular graph embedded in M, then f∈ẞ(M, Pn). 
Moreover, if M is simply connected, then H(f) will acts 1-transitively 
on the set of 2-cells of M and Kf will be a Cayley color graph of the 
group H(f).

Example 4: Let 2 3{ : 1},= = ∈ =M S x R x  be the unit sphere in 
the Euclidean 3-space. Let f: M → M, be given by ( , , ) ( , , )=f x y z x y z
. Then f is a neat folding and the graph Γf is a regular graph of valency 4, 
with 6 vertices, twelve 1-cells and eight 2-cells. The image is the positive 
octant P3 where x≥0, y≥0, z≥0 see Figure 7a. Since Γf is a regular graph, 
it follows that f is a balanced folding and the graph , which is a Cayley 
color graph, has the form given in Figure 7b. Hence H(f) is isomorphic 
to Z2×Z2×Z2 and it acts 1-transitively on the set of eight 2-cells A1, A2,…, 
A8.

We now explore the relationship between balanced foldings and 
covering maps. 

Theorem 2: Let f∈ Ɲ(M,Pn), and let : →p M M  be the universal 
covering. Suppose that 

f =fop ∈ ẞ ( , )

nM P  and that ( ) ( )G p H f . Then there is a 
subgroup H(f) of G(f), isomorphic to ( ) / ( )H f G p , acting 1-transitively 
on the set of 2-cell of M by f.

Proof: We first construct the group H(f). Let ( )∈ h H f , we 
now show that h  covers a (unique) homeomorphism h: M → M, 
i.e. = hop poh . Let a∈M, and let 1( )−∈a p a . Put ( )= b p b , where 

( )= 

b h a . The point b is independent of the choice of 1( )−∈a p a . For 
if ( ) =p c a , and ( ) =p d d  where ( )= 

d h c , then there is an element 
g∈G(p) such that ( ) = g a c. Consider 1−′ =  g hogoh . Then ( )′ = g b d . 
Since ( ) ( )G p H f , ( )′∈g G p . Thus ( ) ( )= = = b p b p d d .

Now, define h: M → M by h(a)=b. Then h is a homeomorphism 
of M, and, trivially, the set ( ) { : ( )}= ∈ H f h h H f  is a subgroup 
of G(f) isomorphic to ( ) / ( )H f G p . Thus there is an epimorphism 

: ( ) ( )θ →H f H f  given by ( )θ =h h.

Secondly, we show that H(f) acts 1-transitively on the set of 2-cells 
of M by f. Let A, B be 2-cells of M by f. Then there are 2-cells A and B  
of M  by f  such that ( ) =p A A  and ( ) =p B B . Let h  be the unique 

Figure 6: The oriented edges.
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element of ( )H f  such that ( ) =  h A B  and let ( )θ= h h . Then h(A)=B, 
and there is only one such element of H(f).

It should be noted that if : →p M M  is a covering map, and 
=f fop , where f∈Ɲ(M,Pn) , then ∈f ẞ ( , )

nM P  implies that f∈ẞ(M, 
Pn).

Example 5: Let M=Pn(R) be the real projective, n-space, and let 

Pn be the n-polygon 
1

1

1
{ : 1,0 1}

+
+

=

∈ = ≤ ≤∑
n

n
i i

i
t R t t . Define f: M → Pn by 

1 1({ }) ( ,..., ) /+= nf x x x x . Then 


M  may be identified with Sn, and 

: →


p M M  is given by p(x)={x}. In this case G(p)≅ Z2 is generated 
by the map g: Sn → Sn, g(x)=- x and 1

2( ) ( ) +≅
 nH f Z  is generated by 

the reflexions gi: R
n+1 → Rn+1, gi(x1,…,xn+1)=(x1,…,xi-1,-xi,xi+1,…,xn+1) and 

1 1( ) ( )( ) ( ,..., ) /+= =


nf x fop x x x x  as above.

Theorem 3: Let f  and f be as in Theorem 1 such that ( ) ( )G p H f . Let γ: 
L → M be a regular covering. Then H(g), where g=foγ, acts 1-transitively 
on the set of 2-cells of L by g.

Proof: Since M is simply connected, for any other covering map 
γ: L → M there exists a universal covering map : →



h M L  such that 
γoh=p (Figure 8).

Now G(p)≅Π1(M) and G(h)≅Π1(L). Since γ: L → M is regular 
γ∗Π1(L,y) Π1(M,x), where γ(y)=x. There is isomorphism Φ: G(p) → 
Π1(M) and Ψ: G(h) → Π1(L) such that following diagram is commutative 
(Figure 9).

It follows from elementary group theory that, since Π1(L) is 
embedded in Π1(M) as a normal subgroup, then G(h) is embedded by 
α in G(p) as a normal subgroup. But ( ) ( )G p H f  by assumption. 
Hence ( ) ( )G h H f  and Theorem 2 can be applied for g, yielding that 

( ) ( ) / ( )= G g H f G h  acts 1-transitively on the set of 2-cells of L by g.

Euler Numbers of Balanced Folding onto a Polygon
General considerations

Let f∈Ɲ(M,N), where M and N are surfaces. To avoid too many 
complications, let us suppose that M is compact, connected and 
without boundary, and let N be connected.

Since M is compact the graph Γf is a finite graph. Let Γf divides M 
into k 2-cells, or faces, A1, A2,…, Ak. In this case f |Ai, i=1, …, k is a 
homeomorphism onto the interior of N.

We can triangulate N by a simplicial complex TN such that every 
vertex of the cell decomposition Cf of ∂N is a vertex of TN. Let TM be the 
triangulation of M induced by f.

Consider the faces A1, …, Ak and their closures B1, …, Bk. Thus 

e(Bi)=e(N), i=1, …, k, where e(X) is the Euler number of X. If we now 
calculate the Euler number e(M) of M using the triangulation TN, then 

we can compare e(M) with 
1

( ) ( )
=

=∑
k

i
i

e B ke N . We note that for each 

vertex of Γf with valency υ exactly υ vertices have been counted in the 
calculation of the Euler number ke(N) of the disjoint union of B1, …, 
Bn. Likewise, every edge of Γf appears twice in these calculations. Figure 
10 which shows the neighborhood of a vertex with valency 4, may help 
to clarify these remarks.

Thus to obtain e(M) from 
1

( )
=
∑

k

i
i

e B  we must subtract (υ -1) for each 

vertex of Γf (of valency υ) and add the number of edges of Γf . The first 
of these is V-nk, where V is the number of vertices of Γf , and n is the 

number of vertices of ∂N. The second is equal to 
2

nk . We conclude 
that:

( ) ( )  
2

= + −
nke M ke N V                    (1)

The case in which N is the disc D2, e(N)=1 and each 2-cell A of M is 
homeomorphic to D2. Thus equation (1) now reduces to

2e(M)=k(2- n) + 2V                  (2)

Figure 7: Cayley color graph.

Figure 8: Universal covering map.

Figure 9: Universal covering map 2.

Figure 10: Neighborhood of a vertex with valency 4.
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Balanced folding over a polygon

Equations (1) and (2) can be refined slightly when f is balanced. In 
this case, if we label the vertices of the polygon Pn as V1, …, Vn, then 
each vertex in the set f -1(Vj) has the same valency 2qj, j=1, …, n.

It follows that f -1(Vj) contains 
2 j

k
q

 elements. Thus the number of 
vertices of Γf is:

1

1
2 =

= ∑
n

j j

kV
q

   (3)

Hence for a balanced folding over a disc, equation (3) may be 
reduced to

( ) ( )
1 1

1 12  (2 ) 2
= =

  = − + = − + 
  

∑ ∑
n n

j jj j

e M k n k k n
q q

   (4)

Certain cases of equation (4) are of special interest. For instance, let 
n=3, so that M is triangulated by Γf, and equation (4) becomes

( )
1 2 3

1 1 12  1
  = + + − 
  

e M k
q q q

           (5)

Thus if M is a sphere, then 
1 2 3

1 1 1 1+ + >
q q q

 and k≥4. The only 

possibilities are listed in the following Table 1:

The group H(f) associated with f according to Theorem 1 is shown 
in column5, and the corresponding triangulation of S2 are shown in 
Figures 11a-11d. Note that in Figure 11d we have drawn only one side. 
The vertices are labeled in such a way that vertices with the same image 
under f are labelled alike.

References

1. Kinsey LC (1993) Topology of surfaces. Springer, New York, USA.

2. El-Kholy E, Shahin RM (1998) Cellular folding. J Inst Math and Comp Sci 11: 
177-181.

3. Robertson SA, El-Kholy E (1986) Topological foldings. Commun Fac Sci Univ
Ank Ser 35: 101-107.

4. Farran HR, El-Kholy E, Robertson SA (1996) Folding a surface to a polygon. 
Geometriae Dedicata 63: 255-266.

Figure 11: Triangulation.

q1 q2 q3 k H(f)
2 2 p, p>1 4p Ɗ2n

2 3 3 24  O
2 3 4 48  Ō
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Table 1: Possibilities list.
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