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Introduction
Polymorphic tandem repeats draw interest in pharmacogenomics 

research because of their prevalence in the human genome, and their 
putative functional role. Polymorphic Short Tandem Repeats (STR) 
emerged as a separate class of genetic mutations, which together with 
Single Nucleotide Polymorphisms (SNPs), Copy Number Variations 
(CNVs), and biallelic indels can explain variability in response to 
pharmacotherapy. 

Repetitive DNA sequences may comprise over two-thirds of the 
human genome [1]. Depending on the length of the repeated motif, 
tandem repeats are categorized as microsatellites (short tandem repeats 
of DNA motifs 1 to 6 bp long, or STR), minisatellites (tandem repeats 
of moderate motifs 10-100 bp long), and macrosatellites with motifs 
longer than 100 bp. In humans, STR makes up to 3% of the total 
genomic DNA which exceeds the protein coding part of the human 
genome [2]. 

Depending on the search algorithm, there are approximately 
700,000–1,000,000 STR loci with 2-6 bp long motifs in the human 
reference genome [3,4]. Di- and tetra-nucleotide STR constitute about 
75% of STR, with the remaining loci containing tri-, penta-, and hexa-
nucleotide repeats. The overall STR density in the human genome is 
comparable across chromosomes (mean ± SD=13,613 ± 1,887 bp/Mb), 
with chromosome 19 showing the highest STR density (20,351 bp/Mb) 
[5]. Within genes, microsatellite repeats are non-randomly distributed 
across protein-coding sequences, untranslated regions (UTRs), and 
introns. In the coding regions of the genes, repeats predominantly have 
either trimeric or hexameric repeat unit, likely as a result of selection 
against frameshift mutations [4,6]. STR containing dinucleotide repeat 
units are much more abundant in the regulatory or UTR regions than 
in other genomic regions [2]. 

Initially labeled as nonfunctional (junk) DNA, STR is now 
considered to have biological functions. Microsatellite repeats are 
concentrated at the start of human genes, where they are highly 
conserved near transcription start sites [6,7]. About 19% of human 
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genes contain at least one STR in their upstream regulatory region 
[6,8]. Recent studies demonstrated that STR in the human genome 
contributes to variation in gene expression [9]. Statistical analysis 
of tandem repeat distribution showed a sharp increase around 
Transcription Start Site (TSS), spanning several kilobases up- and 
downstream from the TSS [7].

The exact mechanism of expression modulation by STR remains 
a matter of discussion, and may vary for different STR motifs. 
For example, poly-A STR (microsatellites with A/T motif), the 
most frequent microsatellites in the human genome, are common 
elements of the promoters in the human genome [7]. Poly-A STR 
are hypothesized to participate in the regulation of gene activity 
because they disrupt nucleosome binding which could be a molecular 
mechanism for modulating gene expression [10]. Another example 
of STR overrepresented in the promoter regions of multiple genes is 
AC/GT dinucleotide tandem repeat [7]. The AC/GT tandem repeat 
sequence composed of alternating purine-pyrimidine bases facilitates 
formation of Z-DNA, and could prevent nucleosome binding leading to 
chromatin opening. Formation of H-DNA triplex structure composed 
of CT/AG poly-purine/poly-pyrimidine mirror repeats potentially 
leads to modified chromatin structure and transcriptional activation. 

An intrinsic property of STR is the high rate of mutation. STR 
mutates by expansion or contraction in the number of repeat units, 
and is often described as a Variable Number of Tandem Repeats 
(VNTR). The frequency of STR mutations depends on the length 
of the repeat unit, the number of the repeats, and the match to the 
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consensus sequence (purity) of the repeat tract [11,12]. The mutation 
rates of STRs often lie between 10−3-10−6 per cell generation) which 
is 10 to 105-fold higher than the average mutation rates observed in 
non-repeated regions of the genome [8,12,13]. Apparently, short 
repeats consisting of two or three repeat units are the starting point 
for the microsatellite expansion, either through base substitution, or 
duplication of an adjacent sequence. Once the critical number of repeat 
units is formed (10 repeat units for A/T and 5-6 repeats for AC/GT), 
the locus becomes hyper-variable [14,15]. Based on this mechanism, 
a true microsatellite can be defined as a repeat containing a minimal 
number of units required for the production of indel mutations at a 
frequency greater than the average frequency of indel mutations within 
the genome. Importantly, repeats in the coding regions are significantly 
less variable than repeats in introns, intergenic regions, 3’UTR, and 
non-coding RNA [16]. 

There are currently two major models that describe the mechanisms 
by which STR expand or contract: strand-slippage replication and 
recombination. Strand-slippage replication, also known as slipped-
strand mispairing, or DNA slippage, occurs during replication of the 
tandem repeats. After the newly synthesized DNA strand denatures 
from the template strand during the synthesis of a tandem repeat 
region, it may shift its position along the tandem repeat in the process 
of renaturation ([8], and references therein). Recombination events, 
including unequal crossing over and gene conversion, can also lead 
to contraction and expansions of STR sequences. Recombination 
mechanism is hypothesized to activate in response to double-strand 
breaks formed during DNA replication. The repair of double-strand 
breaks by recombination will result either in addition or loss of repeat 
units. The importance of DNA strand breakage in the mutation 
of tandem repeat tracts is supported by studies demonstrating 
involvement of the double-strand break repair pathway in tandem 
repeat expansion and contraction [17]. 

While the causal relation with the variable numbers of repeats 
in microsatellites was convincingly documented for many diseases, 
importance of STR for drug response remains largely unexplored. 
Elucidating the effects of STR on expression of the genes involved 
in drug metabolism, drug transport, and drug-target interaction 
may help explain variability in efficacy and adverse reactions to 
pharmacotherapy, thus complementing analysis of SNPs, CNV, and 
biallelic indels in individual genomes. This review summarizes the 
role polymorphic STR play in clinical manifestations including their 
potential importance for pharmacogenetic analysis.

Polymorphic Tandem Repeats Modify Gene Expression 
Several pieces of evidence confirm the role of STR in regulation 

of gene expression. First, microsatellite tandem repeats are 
overrepresented in the vicinity of transcription start points within the 
promoter regions of many genes in the human genome [6,7]. Next, 
polymorphic promoters STR are associated with increased variance 
in local gene expression and DNA methylation, suggesting functional 
role for STR [18]. Finally, recent studies revealed contribution of STR 
alleles to gene expression levels and phenotypes [9]. The functional role 
of STR has been demonstrated by effects on gene expression, splicing, 
protein sequence, and association with pathogenic effects [18]. 
Inherently hypervariable microsatellites modulate gene expression 
through several possible mechanisms, e.g. direct addition of functional 
DNA motifs, modification of local DNA or RNA structure, epigenetic 
modification of the local region, altered spacing or orientation of 
regulatory molecules, and alteration of nucleosome positioning [9,18]. 

The mechanisms by which microsatellite repeats affect gene expression 
are likely to be region-specific rather than site-specific because within 
the gene, regulatory microsatellite sequences are found in proximal or 
distal promoter regions, 5’-UTR, and introns. 

Polymorphic microsatellites with putative regulatory functions, the 
corresponding genes and the effect of microsatellite length variability 
on gene expression are exemplified by fifteen STR in Table 1 which 
effects on gene expression were comprehensively documented. 
The corresponding genes encode proteins with different functions 
including receptors (ESK1, IFNAR1, GRIN2A, TLR2), growth factor 
(IGF1), cytokine (TNF), enzymes (HMOX1, MMP9, UGT1A1, 
UGT1A8/9), and transcription factors (FOXA2, FOXP3, STAT6). 
To find correlation between transcription level and a particular STR 
allele, several in vitro, in vivo, and ex vivo experimental techniques were 
used. Using transient transfection of cultured cells, the effect of STR on 
promoter activity can be estimated using reporter constructs where a 
specific promoter region drives expression of a reporter gene. Despite 
the simple experimental design, this method suffers certain limitations, 
particularly because important regulatory elements might be missing 
in the interrogated promoter region. Analysis of mRNA level in 
tissues or Peripheral Blood Mononuclear Cells (PBMC) obtained from 
individuals with a certain genotype often provides more relevant data 
on gene regulation by STR allelic variants. The analysis of the gene 
product (protein level, or enzymatic activity), or clinical phenotype 
(disease susceptibility, or drug response) is also used to find a 
correlation with the specific STR allele. Finally, bioinformatics analysis 
of multiple genomes followed by an association study can provide data 
on correlation between STR length and expression rate [19]. This last 
approach may provide a wealth of information for correlative studies 
though methodical problems still remain to be resolved [9,18].

Heme oxygenase 1 encoded by the HMOX1 gene is an important 
stress response, anti-inflammatory, and antioxidant protein inducible 
in response to several types of stress and drug therapy. The GT repeat in 
HMOX1 gene is one of the most extensively characterized examples of 
regulatory polymorphic microsatellites, and detailed mechanistic study 
of HMOX1 gene expression helped to elucidate the role of polymorphic 
STR in its promoter. HMOX1 gene contains a microsatellite sequence 
in the promoter region with a variable number of 10-43 GT repeats 
[20]. The effect of polymorphic STR in the HMOX1 promoter on the 
gene expression was extensively studied using reporter constructs, gene 
expression experiments in patients’ samples, and enzymatic activity. 
Transfection of rat aortic smooth muscle cells with reporter constructs 
[21], HMOX1 mRNA level quantification in three malignant melanoma 
cell lines [22], and analysis of HO-1 protein in six urothelial cancer 
cell lines indicated that shorter GT repeats (n<25) were associated with 
higher level of basal expression of HO-1, and with higher induction 
of this protein [23,24]. Inducible promoter activity of 5’-flanking 
regions in the HMOX1 gene was estimated by transfection of A549 and 
Hep3B cancer cells containing different number of GT repeats, with 
reporter constructs [23]. Exposure to H2O2 induced the transcription 
of the reporter constructs with short (GT16 and GT20) but not long 
(GT29 or GT38) microsatellites. Similarly, umbilical endothelial cells 
(HUVEC) with short GT repeats produced more HO-1 upon induction 
with H2O2 [25]. In contrast to these findings, baseline levels of HMOX1 
mRNA were found lower (and protein level higher) in PBMC from 
healthy subjects [26], while both carriers and non-carriers of L allele 
(n>32) showed similar HMOX1 mRNA expression. Importantly, upon 
induction with heat or hemin, non-L carriers manifested 1.9-fold 
higher increase in mRNA level in response to heat, and after hemin 
stimulation the median HMOX1 mRNA in non-L carriers was 3.9 
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fold higher than in L carriers (p=0.0028) [27]. Studies of transcription 
in cell lines and blood cells collected from patients [27-29], protein 
synthesis and enzymatic activity [23,28,30], and clinical effects [27,30] 
demonstrated significant association with the number of GT-repeats in 
this STR. HO-1 mRNA expression and HO activity were significantly 
higher in lymphoblastoid cell lines with SS genotype compared with 
those with LL genotype [28]. Inducible regulation of HMOX1 gene 
is under control of a complex regulatory mechanism [31], and the 
phenotypic manifestation of STR polymorphism may therefore be 
obscured [26]. The level of HO-1 protein determined by flow cytometry 
in PBMC from healthy individual carriers of S alleles (number of 
repeats ≤25) and L alleles (number of repeats >25) was significantly 
different: following LPS stimulation, monocytes from individuals with 
SS genotype showed a significantly higher HO-1 expression compared 
to LL homozygous individuals [30]. In a separate study, PBMC isolated 
from patients with suspected coronary atherosclerosis were treated 
with hemin. Assessment of HMOX1 mRNA revealed significantly 
higher hemin-stimulated mRNA expression in SS genotypes compared 
to SL and LL genotypes (S allele, number of repeats <26, and L allele, 
number of repeats >26) [29]. Analysis of the microsatellite effect is often 

complicated by the presence of alternative TSS or splicing. A novel 
exon 1a was found in the HMOX1 gene placing a (GT) microsatellite 
in intronic position within the 5’-untranslated region [31]. The 
quantitative outcome of alternative splicing within the 5’-untranslated 
region was affected by (GT)n microsatellite polymorphism. 

The similar relation between the number of GT repeats in the 
promoter region and gene expression activity was detected in GRIN2A 
gene (Table 1) encoding the NR2A subunit of NMDA receptor 
expressed in neurons [32]. Reporter constructs with GRIN2A promoter 
coupled with luc gene demonstrated increased luc expression with 
shortening STR in GRIN2A promoter [33,34]. The promoter activity 
of the construct with 25-42 GT-repeats was 50-61% lower than that 
with no GT repeats. The receptor binding assay in postmortem brains 
indicated reduction of GRIN2A expression in the carriers of longer GT 
repeats [33].

The FOXP3 gene is located on the X chromosome and mediates 
functional activity of T regulatory cells (Table 1). An association 
between FOXP3 microsatellite polymorphism in a region with 
promoter/enhancer activity, and gene expression has been found in 

S. No. Motif Gene ID Gene region Position Chr Reporter
construct

mRNA
expression

Protein
activity

Longer alleles 
associated with Reference

1 (GT)n, n=12-
19 FOXP3 Promoter Exon 0

(-150 – -177) X Yes Yes n/a
Decreased expression 

in three cell lines (HeLa, 
COS-7, and Jurkat T)

[35,36,38]

2 (GT)n,
n=12-42 GRIN2A Promoter

Upstream of TSS 
(-721 –
-679)

16 Yes n/a Yes Decreased expression in 
cell culture [33,34]

3 (GT)n, n=10-
43 HMXO1 Promoter Upstream of TSS 

(-172) 22 Yes Yes Yes Decreased expression [23,24,27-29,31]

4 (CA)n,
n=13-26 EGFR Intron 1 Upstream of enhacer 

2 (+1,788 to +2,318) 7 Yes Yes Yes Decreased expression [40,42,43,77]

5 (TA)n, n=5-8 UGT1A1 Promoter 
TATA box

Upstream of TSS 
(-23-38) 2 yes n/a yes Decreased expression [87-89]

6 (GT)n,
n=12-24 STAT6 5’-UTR

Downstream 
from TSS (+94) 

(rs71802646); three 
more STR upstream 

of TSS
(-2514);

(-801); (-734);

12 yes n/a n/a
Decreased expression in 
HMC-1, BEAS-2B, and 

Jurkat cells
[90]

7 (CGC)n, n=5 
≥ 200 FMR1 5'-UTR Downstream from 

TSS (+85) X Yes Yes Yes Decreased expression [69-72]

8
(AC)n, n=14-

27; (GT)n,
n=12-19

COL1A2
Promoter

Intron 1

AC repeat
(-1457-1374) GT 

repeat (+1413 
-+1480)

7 Yes n/a n/a Expression non-linearly 
depends on both repeats [39]

9 (CCT)n, 
n=13-19 FOXA2 Intron 1

(-415) upstream of 
TSS in alternative 

exon 2
20 Yes Yes n/a

Non-linear (allele 
with n=14 shows max 

expression)
[46,71]

10 (GT)n, n=15-
27 VWF Promoter Upstream of TSS 

(-2144 -2105) 12 Yes n/a n/a Increased expression [67,91]

11 (CA)n, n=12-
28 MMP9 Promoter Upstream of TSS 

(-90) 20 Yes n/a n/a Increased expression [92-94]

12 (GT)n, n=10-
17 IFNG Intron 1

Downstream from 
TSS (+994 bp) 

(rs3138557)
12 Yes n/a Yes

Increased expression in 
cultured cells (HepG2, 

Jurkat); decreased 
expression ex vivo

[95-97]

13 (GT)n, n=12-
28 TLR2 Intron 2 (-100 upstream of the 

start codon) 4 Yes Yes n/a
Increased expression in 
K562 cells; decreased 

expression ex vivo
[45,98]

14 (T)n, n=9-19 UTG1A8 
UGT1A9 Promoter Upstream of TSS 

(-120) 2 Yes n/a n/a Increased expression in 
Caco 2 cells [99]

15 (GAG)n, 
n=4-10 GCLC 5' UTR Upstream of the start 

codon (-10) 6 Yes n/a yes Increased expression [100,101]

Table 1: Polymorphic microsatellite sequences in the regulatory regions of the human genes, and their effect on gene expression.
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S. No. Gene Protein function Motif Associated condition Potential drug interactions Ref

1 ESR1 Receptor

(GT)n,
n=11-18 
(TA)n,

n=10-27

Breast cancer; lone atrial 
fibrillation; postpartum depression; 

harm avoidance score; 
osteoporosis

Anastrozole, atorvastatin, 
cisplatin, conjugated estrogens, 
dexamethasone, exemestane, 

glibenclamide, leflunomide, 
letrozole, medroxyprogesterone, 
methamphetamine, raloxifene, 

tamoxifen

[102-109]

2 IFNAR1 Receptor (GT)n,
n=5-17

Depressive symptoms during 
IFG-alpha therapy for hepatitis C; 
response to interferon therapy of 

hepatitis C

Glatiramer acetate [107-109]

3 IGF1 Insulin-like growth 
factor

(CA)n,
n=10-24

Endometrial cancer; age at natural 
menopause; disease onset in 

HNPCC; colorectal cancer
No known drug association [110-114]

4 TIGR/MYOC Cytoskeletal
function

(GT)n,
n=13-14  and 

n=15-16

Juvenile-onset primary open-angle 
glaucoma; glaucoma No known drug association [115,116]

5 TNF Cytokine (GT)n,
n=7-18

Myocardial infarction; systemic 
lupus erythematosus; dengue; 

gasric and hepatocellular cancer

Adalimumab, atorvastatin, 
carbamazepine, clozapine, 
cyclosporine, etanercept, 

ethambutol, infliximab, isoniazid, 
lansoprazole, Mycophenolate 

mofetil, omeprazole, pyrazinamide, 
rabeprazole, rifampin, rituximab, 
sirolimus, sorafenib, stavudine, 

tumor necrosis factor alpha (TNF-
alpha) inhibitors

[117-121]

6 COL1A2 The fibrillar collagen
(AC)n,

n=14-27; (GT)n,
n=12-19

Bone mineral density; systemic 
sclerosis Daunorubicin, doxorubicin [39,74,122-124]

7 EGFR Target (CA)n,
n=14-26

Thymoma aggressiveness; 
reponse to TKI therapy in NSCLC 

patients; response to 5-FU 
therapy

Afatinib, alkylating agents, 
carboplatin, cetuximab, docetaxel, 

erlotinib, fluorouracil, gefitinib, 
geldanamycin, gemcitabine, 

irinotecan, leucovorin, paclitaxel, 
panitumumab, tegafur, 

topoisomerase I inhibitors

[40,42,78,125-128]

8 FMR1 Cognitive 
development

(CGC)n,
n=5 ≥ 200

Premature ovarian failure; primary 
ovarian insufficiency and tremor-

ataxia syndrome
No drug interaction [68,71,72,129,130]

9 FOXA2 Forkhead box A2 (CCT)n, n=13-19 Type 2 diabetes; CYP3A4 
expression Drugs metabolized by CYP3A4 [46,131]

10 FOXP3 Transcription factor (GT)n,
N=12-19

Type 1 diabetes; survival of renal 
transplant patients; graft versus 

host disease
Tacrolimus [35-38]

11 GCLC Target (GAG)n,
n=4-10 Schizophrenia; Type 1 diabetes Sulphamethoxazole  [100,101,132-134]

12 GRIN2A NMDA receptor (GT)n,
n=12-42

Schizzophrenia, alcoholism; 
hippocampal and amygdala 

volumes; concussion recovery
Methylphenidate [33,34,60-64]

13 HMXO1

Stress response 
anti-inflammatory, 
anti-oxidant, anti-

proliferative

(GT)n,
n=10-43

Melanoma; inhibitory Ab to F8 
in severe hemophilia A; Type 
2 diabetes mellitus; coronary 
atherosclerosis; emphysema; 

severe malaria; pulmonary 
disease, cardivascular 

disease, renal transplantation, 
obstetrics, neurological disease, 

hematological/serological 
disorders

Aspirin, statins, mimetic pepetides, 
probucol, losartan, paclitaxel, 

rapamycin, cyclosporin, curcumin, 
resveratrol

[22-29,53,56,82,135]

14 IFNG Interferon-gamma (GT)n,
n=10-17

Generalized vitiligo; malaria; 
response to immunosuppressive 
treatment; sporadic breast cancer

Infliximab, adalimumab, etanercept [96,97,109,136]

15 MMP9 Matrix 
metalloproteinase

(CA)n,
n=17-25

Diabetic end-stage renal 
disease; diabetic nephropathy; 
bladder cancer invasiveness; 
multiple sclerosis; age-related 
macular degeneration; carotid 

atherosclerosis

Hydralazine, nifedipine, methyldopa [92-94,137]
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several cell lines (HeLa, COS-7, and Jurkat T) transfected with reporter 
constructs [35,36]. In addition, an association between the number 
of GT repeat in FOXP3 gene and several conditions including type 
1 diabetes, development of severe acute graft versus host disease in 
patients transplanted from donors harboring short alleles, and renal 
allograft survival was detected [35-37]. Type 1 diabetes–associated 
allele (GT)15 in FOXP3 promoter demonstrated a higher activity in 
reporter gene experiments with three cell lines supporting a direct 
effect of STR on FOXP3 expression [35,36]. On the other hand, there 
was no significant difference in FOXP3 expression level between the 
groups of asthmatic patients stratified by (GT)n genotype [38]. This 
latter finding may indicate that this microsatellite polymorphism does 
not directly regulate the expression of the chromosomal gene. 

Transcription driven by COL1A2 promoter (Table 1) is enhanced 
by the presence of two dinucleotide repeats located in the 5’-flanking 
region of the gene, and the first intron of the gene, at the distance 
about 1.4 kB [39]. When tested in the reporter construct-transfected 
human skin fibroblasts, these repeats were found essential for the 
transcriptional stimulation of the COL1A2 gene. Importantly, the 
stimulating effect was due to the presence of both repeats, rather than 
any one of them. Moreover, the transcriptional activity was modulated 
by combination of the alleles differed in the number of dinucleotide 
repeats.

In addition to microsatellites in the promoter region, AC/GT 

repeats with recognized gene modulating activity were detected in 
intronic sequences (Table 1). An important example of a functional 
microsatellite residing outside the promoter was found in the 
gene coding for Epidermal Growth Factor Receptor (EGFR). The 
human EGFR gene is located on chromosome 7, and regulated by 
a single promoter and two enhancer regions. The length of a highly 
polymorphic CA/TG microsatellite in the intron 1 of EGFR correlates 
with expression of EGFR both in vitro and in vivo [40,41]. The longer 
CA21 allele exhibits 80% lower transcription than CA16 allele [42]. 
Cells with shorter CA repeats manifested higher transcription level of 
EGFR mRNA, higher level of EGFR protein, and were more sensitive 
to tyrosine kinase inhibitor erlotinib in 12 head and neck cancer cell 
lines [43]. Importantly, the length of CA repeats modulates EGFR 
transcription in NSCLC patients, and affects protein expression and 
response to therapy [43,44]. 

Finally, GT microsatellite repeat in the second intron of TLR2 gene 
was demonstrated to affect promoter activity. Expression of TLR2 
protein in PBMC cells in the carriers of short alleles (n≤16) was higher 
than in non-carriers of short alleles [45]. CCT trinucleotide repeat 
in the alternative promoter (212 bp upstream of TSS.1) modulates 
expression of FoxA2 transcription factor, with the highest expression 
from the allele containing 14 repeats [46]. Transfection experiments 
with polymorphic repeats in the reporter constructs confirmed the data 
on the transcriptional activity of this allele in HepG2 cells. 

16 STAT6 Transcription factor (GT)n,
n=12-24

Bronchial asthma, atopic 
dermatitis, food-related 

anaphylaxis astma; eosinophil cell 
count;

No known drug interactions [90,138-140]

17 TLR2 Receptor (GT)n,
n=12-28

Colorectal cancer; leprosy; TB; 
acute pancreatitis; spontaneous 
bacterial peritonitis; rheumatoid 

arthritis

TNF alpha inhibitors [45,141-146]

18 UGT1A1 DME (TA)n,
n=5-8

Gilbert's syndrome, 
Hyperbilirubinemia transient 

familial neonatal, Crigler-Najjar 
syndrome

Acetaminophen, antivirals for 
treatment of HIV infections, 

atazanavir, belinostat, 
bevacizumab, bilirubin, cisplatin, 

deferasirox, dolutegravir, 
fluorouracil, gepirone hydrochloride, 

irinotecan, leucovorin, nilotinib, 
olanzapine, oxaliplatin, pazopanib, 
peginterferon alfa-2b, raloxifene, 
raltegravir, ribavirin, ritonavir, SN-

38, sorafenib

[87,147,148]

19 UTG1A8 
UGT1A9 DME (T)n,

n=9-19 Pericholangitis

UGT1A8: ABT-751, allopurinol, 
anthracyclines and related 

substances, atazanavir, 
cyclosporine, febuxostat, irinotecan, 

lamivudine, mycophenolate 
mofetil, mycophenolic acid, 

sirolimus, tacrolimus, tipifarnib, 
valproic acid, zidovudine                                                         

UGT1A9: acetaminophen, 
allopurinol, anthracyclines and 

related substances, aspirin, 
atazanavir, cisplatin, entacapone, 
febuxostat, irinotecan, labetalol, 

lamivudine, microsatellite, 
mycophenolate mofetil, 

mycophenolic acid, oxcarbazepine, 
propofol, raltegravir, ritonavir, 
simvastatin, SN-38, sorafenib, 

sulfinpyrazone, tipifarnib, 
tolcapone, valproic acid, zidovudine

[99]

20 VWF An antihemophilic 
factor carrier

(GT)n,
N=15-24

Circulating level of VWF; Cortisol-
dependent increase of VWF No known drug interactions [65,91]

Table 2: Association of polymorphic microsatellite sequences in the regulatory regions of the human genes with clinical phenotypes, and potential effect on drug response.
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In many cases, the shorter GT repeats reveal increased promoter 
activity, as demonstrated by promoter assays. Table 1 summarizes 
examples of microsatellite polymorphisms in the regulatory regions of 
the human genes, and available data on promoter activity. For instance, 
reporter constructs with shorter AC/GT repeats demonstrated increased 
activity with COL2A1, FOXP3, GRIN2A, HMOX1, MMP9, STAT6 
promoters (Table 1). This correlation holds true also for GT repeats 
in intronic sequences of EGFR, TLR2, as well as trinucleotide repeats 
of FOXA2 (intron 1), and FMR1 (5’-UTR) genes. On the other hand, 
such correlation was not found for GT repeat-containing promoters 
in VWF, IFNG genes, mononucleotide (T)n STR in UGT1A8/9, and 
trinucleotide STR in the 5’-UTR of GCLC gene. 

STR and Clinical Phenotype
Because of high variability, microsatellite loci are often used in 

forensics, population genetics, and genetic genealogy [47]. Significant 
associations were demonstrated between microsatellite variants 
and genetic diseases including some neurological conditions such 
as Huntington’s disease, Parkinson’s disease, autism, amyotrophic 
lateral sclerosis, and certain types of ataxia [48,49]. Such relationship 
supports the premise about phenotypic manifestation of microsatellite 
polymorphisms. Multiple studies evidenced the clinical impact of GTn 
microsatellite polymorphism in pulmonary disease, cardiovascular 
disease, renal transplantation, obstetrics, neurological disease, 
and hematological/serological disorders [21,22,50-59]. Clinical 
manifestations of microsatellite polymorphisms are exemplified by 
twenty STR with clearly defined phenotypes shown in Table 2. 

The functional role of GT repeat polymorphism in HMOX1 
promoter in human disease was overviewed by Exner et al. [50]. 
Daenen et al. performed a systematic review and a meta-analysis on 
the association of GT microsatellite polymorphism in the HMOX1 
promoter and cardiovascular disease with the cutoff of the short 
allele set to 25-27 repeats [59]. The results from 41 selected studies 
revealed that the proportion of the short SS genotype was lower in the 
Cardiovascular patient (CVD) group compared with non-CVD group 
(13.3% vs. 18.9%, P<0.0001). The odds ratio in LL vs SS genotype was 
1.769 (95% Confidence Interval [CI], 1594-1.963). Another systematic 
review and meta-analysis of 5 studies of the association between the 
microsatellite polymorphism in the HMOX1 promoter and type 2 
diabetes contained data on 1751 cases and 2902 controls. The odds 
ratio for type 2 diabetes in persons with LL genotype was significantly 
increased compared with the SS genotype (OR=1.25, 95% CI: 1.04, 
1.50; P=0.02). Statistical analysis showed that carriers of longer GT 
repeats (≥25-27 repeats) in the HMOX1 promoter had higher risk of 
type 2 diabetes [53]. Analysis of GT repeat distribution in 942 children 
with sickle cell disease demonstrated that children with two short 
alleles (≤25 repeats) had lower rate of hospitalization for acute chest 
syndrome (incidence rate ratio 0.28, 95% CI, 0.10-0.81) [54]. The GT 
repeat polymorphism in the HMOX1 promoter was associated with 
severe disease and death in Gambian children with malaria [27]. 

Polymorphism of microsatellite sequences was also associated with 
psychiatric disorders, and concussion recovery rate. Clinical studies 
indicated that the longer alleles of GRIN2A were overrepresented in 
schizophrenics, and the score of symptom severity correlated with repeat 
length. This study was later expanded to 672 schizophrenics vs. 686 
controls, and confirmed the significant association between GT-repeat 
polymorphism and disease [60]. Similarly, association of the GT-repeat 
polymorphism with schizophrenia was demonstrated in 122 Chinese 
sib-pair families [61]. Clinical studies demonstrated association of GT-

polymorphism in GRIN2A promoter and hippocampal and amygdala 
volumes [62], alcoholism [63], and D-serine level in schizophrenics 
[34]. In a study of 87 athletes suffering with a concussion, homozygous 
carriers of the longer alleles were six times more likely to experience 
longer recovery, compared with homozygous carriers of short (<25 
repeats) alleles [32,64].

The GT repeat element is a part of VWF promoter coding for the 
von Willebrand factor, an essential plasma glycoprotein which mediates 
platelet adhesion and aggregation at the sites of vascular injury. Plasma 
concentration of VWF protein is under control of several factors 
including genetic polymorphism, and the dinucleotide tandem repeat 
(GT)n was hypothesized to influence the VWF level. An association 
of variable number of tandem GT repeats with the level of VWF was 
demonstrated in sixty-nine Cushing’s syndrome patients [65]. Short 
repeats (n=15-19) were found more frequently in a group with high 
VWF induced by glucocorticoid excess, while long repeats (n=20-24) 
were predominant in a group with normal VWF. Risk of cortisol-
induced increase of VWF was three times higher for allele’s with15-19 
GT repeats (GT15-19) than for 20-24 repeats (GT20-24), and 13-fold 
higher for non-carriers of (GT20-24) alleles compared to non-carriers 
of (GT15-19) alleles. In a larger group of samples (1115 European 
male and female healthy controls), VWF:Ag values were lower in 
homozygous carriers of short allele (<20 repeats) when compared to 
heterozygous carriers of short and long alleles, or homozygous carriers 
of long (≥20 repeats) allele. It should be mentioned that in a separate 
study in a group of 394 healthy individuals, the number of GT repeats 
did not correlate with VWF level [66]. These results were in contrast 
to greater VWF promoter activity under shear stress conditions when 
long GT repeats were present [67]. In this study, the bovine aortic 
endothelial cells (BAEC) were transfected with reporter construct 
prepared with different combinations of SNPs and GT repeats in the 
VWF promoter governing expression of a reporter gene. The upstream 
SNP haplotype did not affect promoter activation after shear stress. 
Rather, the promoters were more active when contained 23 repeats 
vs. 17 repeats. Importantly, the absence of GT repeats did not change 
the basal VWF promoter activity, but they were essential for the shear 
stress induced promoter activation [67]. One possible explanation for 
this discrepancy is different mechanisms for VWF upregulation after 
shear stress and cortisol induction [65]. 

Increased level of FMR1 transcription was observed among 
premutation (61-200 CGG repeats) carriers of expanded CGG repeat 
in the 5’-untranslated region of the FMR1 gene. The premutation form 
is highly unstable when transmitted from parent to child. Increase in 
the number of CGG repeats leads to the increase of FMR1 transcript 
[68,69]. Interestingly, FMR protein levels decrease, likely due to poor 
initiation of translation at the downstream initiation codon [70,71]. A 
large study in 238 individuals confirmed a significant linear relationship 
between transcript level and CGG repeat size within the premutation 
size alleles [72]. Expansion of the repeat number beyond 200 results 
in hypermethylation and silencing of the gene which is phenotypically 
manifested as Fragile X Syndrome (FXS) [73].

An association between the microsatellite GT polymorphism in 
the intron 1 of COL1A2 gene and bone mineral density was found in 
Chinese population after analysis of 388 nuclear families with a total of 
1220 individuals [74]. In addition, an association was found between the 
number of GT repeats in FOXP3 gene and several conditions including type 
1 diabetes, development of severe acute graft versus host disease in patients 
transplanted from donors harboring short alleles, and renal allograft 
survival [35-37]. Importantly, no difference in the mean expression of 
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FOXP3 mRNA was detected between asthmatic (n=49) and healthy (n=7) 
subjects grouped by GT repeat genotypes [38]. 

Pharmacogenomics of STR
Phenotypic manifestation of variability in the length of STR 

remains poorly understood despite the fact that their association 
with neuromuscular and neurodegenerative diseases, several 
complex disorders, and several types of cancer has been convincingly 
demonstrated [6]. While genome-wide association studies of 
complex phenotypes are complicated, pharmacogenomic analysis 
of drug therapy provides a simpler model for deducing macro scale 
characteristics of a human organism based on his/her genome. Drug 
response is often determined by a variant of one or a few genes, for 
example those involved in drug metabolism, drug transport, or drug-
target interaction [75-129]. Pharmacogenomic datasets include big 
populations of patients who have been medically characterized, have 
been treated with a standardized chemical stimulus (drug therapy), 
have records on the medical outcome, and for whom the genome 
sequence is often available. 

Information about the effect of genetic variants on drug response 
is summarized in the PharmGKB database (https://www.pharmgkb.
org). This database contains manually curated information about 
genetic variant-drug pairs based on individual PubMed publications. 
Because PharmGKB database collects information about all kinds of 
genetic variants (mostly SNPs), it is impossible at this time to focus 
this analysis on microsatellite length variations. Table 2 lists clinically 
used medications that may give observable clinical effects of STR 
polymorphism. The examples shown in the Table 2 substantiate 
future studies of relationship between microsatellite variants and 
drug response, and can be used as a starting point for a search of STR 
important for pharmacogenetic analysis.

Variable UGT1A1 expression due to microsatellite polymorphism 
in the TATA box of its promoter is extensively studied, and 
UGT1A1*28 allele is an important pharmacogenetic polymorphism 
[76-148]. The strong effect of additional TA repeats upstream the TSS 
is likely explained by the deviation of the TATA box from the canonical 
sequence. Expression analysis of (TA)7 sequence in the UGT1A1*28 
allele provides mechanistic insights into the effect of polymorphic STR 
on transcription. 

Reduced expression of EGFR mRNA associated with elongation of 
CA/TG STR located in intron 1 upstream of enhancer 2 of the EGFR gene 
is another well-documented example of STR effect on gene expression. 
Longer alleles for the CA SSR I repeat were associated with significantly 
lower EGFR expression, and predicted poor outcome of chemotherapy 
[77]. Evaluation of CA repeats in 62 EGFR somatic mutation-positive 
patients with advanced NSCLC treated with erlotinib demonstrated a 
significantly higher median progression free survival (HR=0.39, 0.22-
0.70; p=0.002) and overall survival (HR = 0.43, 0.23-0.78); p=0.006) in 
patients harboring short CA repeat alleles (n≤16 repeats in any allele) 
compared to those with long alleles (n>16 in both alleles) [78]. The 
length of CA repeats was also a significant predictor for clinical outcome 
in 84 advanced NSCLC patients treated with gefitinib. The response 
rate of short CA repeat genotype was significantly higher (88.5% vs. 
48.3%, p<0.001), and a combination of shorter CA repeat genotype 
with rs2293347GG had pronounced clinical benefit. More than 90% 
of patients with rs2293347GG and short CA repeat genotypes respond 
to gefitinib therapy, vs. 26% response in patients who carried longer 
CA repeats along with at least one rs2293347A allele [79]. Finally, the 
EGFR intron 1 CA repeat polymorphism was associated with survival 

of 38 advanced gastric cancer patients treated with cetuximab (a 
monoclonal antibody targeting EGFR). Among 38 patients, twenty-
one had short repeats (sum of both alleles ≤37), and 17 patients carried 
longer alleles (sum ≥38). The first category had longer progression-free 
survival (HR-0.42, 0.19-0.96; p=0.040) and overall survival (HR=0.40, 
0.16-0.99; p=0.048) compared to the second category of patients. EGFR 
expression in the tumor tissues was higher in patients with short CA 
repeats [80].

In patients with colorectal cancer, 84% of patients with a sum of 
alleles of <35 developed an acneiform rash, compared with 33% of 
those with the sum of alleles of ≥35 (p=0.04) [43]. Association between 
the length of the CA SSR I and the response of locally advanced rectal 
cancer following adjuvant or neoadjuvant chemo radiation therapy was 
related to the additive effect of the EGFR R497K polymorphism and the 
length of CA SSR I. In addition, carriers of <20 CA repeats were more 
likely to show disease progression than were patients with ≥20 repeats 
(P< 0.05) when treated with 5-FU/oxaliplatin chemotherapy. These 
results suggest that the short CA SSR I alleles and, consequently, higher 
EGFR expression may predict for worse outcome after conventional 
therapy [81].

N-acetylcystein (NAC) is used to improve the lung function of 
patients with COPD, and to reduce the risk of re-hospitalization. To 
explore a relationship between the effectiveness of oral NAC and the 
HMOX1 promoter polymorphism in COPD patients, a total of 386 
patients were genotyped, and were allocated to standard therapy plus 
NAC [57]. The non-carriers of L allele (>32 GT repeats) manifested 
improvements in forced expiratory volume in 1 second (FEV1) from 
1.44 ± 0.37 to 1.58 ± 0.38 (P=0.04), and FEV1% predicted (from 56.6 ± 
19.2 to 59.7 ± 17.2, P=0.03). The number of yearly COPD exacerbations 
in non-carriers of L allele was lower when compared with carriers of 
L allele (1.5 ± 0.66 vs. 2.1 ± 0.53, P<0.01). The improvement of the 
outcome of 6-min walking distance test was higher in non-carriers 
than in the carriers of L allele [57]. 

Variation in HMOX1 expression due to genetic polymorphism is 
hypothesized to affect drug response, and therefore is a pharmacogenetic 
factor. Considering significant interest in potential modulators of 
HO-1 activity [82-86], detailed analysis of this genetic polymorphism 
is warranted. It is quite conceivable that genetic variants with different 
levels of HO-1 expression may change the therapeutic effect of several 
drug inducers of HO-1 including aspirin, statins, mimetic peptides, 
probucol, losartan, paclitaxel, rapamycin, cyclosporine [82].

Conclusion
Variations in the STR length play an important role in modulating 

gene expression, and STR are likely to be general regulatory elements 
which attenuate expression of multiple genes. Moreover, regulatory 
STR manifests significant polymorphism because of their high intrinsic 
mutation rate. Because many genes with regulatory STR manifest 
variability in the expression level, it is now possible to assess effects of STR 
on gene expression by mining the existing databases. Several technical 
problems still remain to be addressed, such as relatively short reads 
generated by next-generation sequencing technologies, “stuttering” of 
DNA polymerase on STR sequences, insufficient accuracy of alignment 
through the monotonous repeats, and duplicating and compressing 
the sequencing data. Despite these hurdles, correlative analysis of gene 
expression versus STR allelic variants is quite possible. The STR catalogs 
have been generated using various approaches, and became useful tools 
to elucidate the role of STR in genome variability and evolution. Several 
important mechanistic questions remained unanswered: first, does the 

https://www.pharmgkb.org
https://www.pharmgkb.org
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length of microsatellites have a general effect on gene expression, or is it 
relevant only for certain types of promoters? Does this effect depend on 
the microsatellite orientation (e.g., CA repeat versus TG repeat)? What 
is the role of the adjacent sequences surrounding the microsatellite? 
Why does length variation in some STR enhance gene expression while 
in the others, it has an opposite effect? Finally, what protein factors 
facilitate the regulatory functions of STR?

Several facts substantiate further analysis of STR as potentially 
important candidates for pharmacogenetic analysis. First, these 
genetic elements are widely spread across the human genome where 
they are located at the beginning of the genes. Second, a significant 
proportion of microsatellites manifest genetic polymorphism, mostly 
the variable number of tandem repeats. The regulatory functions of 
repeats at the level of transcription, translation, biological activity, and 
clinical manifestation were convincingly demonstrated for multiple 
genes. Finally, many studies demonstrated an association between 
the number of repeats and the clinical effect, e.g. drug response. The 
number of the human genes with CA/TG repeats (n ≥ 25) within 1 kB 
region upstream from transcription start site exceeds 700, including 
ABC and SLC transporters, drug metabolizing enzymes, and drug 
targets. Elucidating the effects of STR on gene expression may help 
explain variability in drug response, something that is not achieved by 
focusing exclusively on SNPs or CNV. This will be the next step toward 
deducing the macro characteristics of an organism from its genome, a 
problem brilliantly solved by myriads of fertilized egg cells.
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