Bilateral Duplication of the Sphenoidal Emissary Foramen: A Case Report with Implications for Surgeries using Transovale Cannulation

Zdilla MJ¹, Cyrus LM¹, Laslo JM¹ and Lambert HW²

¹Department of Natural Sciences and Mathematics, West Liberty University, West Liberty, West Virginia, USA
²Department of Neurobiology and Anatomy, West Virginia University School of Medicine, Robert C. Byrd Health Sciences Center, Morgantown, West Virginia, USA

Corresponding author: Matthew J Zdilla, Department of Natural Sciences and Mathematics, West Liberty University, CSC 139; P.O. Box 295, West Liberty, WV, USA 26074, Tel: +1 304-336-8631; Fax: +1 304-336-8266; E-mail: mzdilla@westliberty.edu

Rec date: Aug 13, 2014, Acc date: Sep 20, 2014, Pub date: Sep 22, 2014

Copyright: © 2014 Zdilla MJ, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Abstract

The sphenoidal emissary foramen (SEF) is an inconsistent foramen located in the middle cranial fossa. The SEF may transmit a sphenoidal emissary vein (of Vesalius), dural venous sinus, nervolulus sphenoidalis lateralis, or an accessory middle meningeal artery. Prior reports have noted SEF to exist unilaterally and bilaterally. Duplication of the SEF has also been documented to occur unilaterally. This case study documents a bilateral duplication of the SEF. Also, this case represents the first anatomical photograph of a bilateral duplication of SEF. Because the SEF are occasionally cannulated by mistake in procedures which attempt to access the middle cranial fossa via the foramen ovale, knowledge of the bilateral duplication of the SEF is important for neurosurgeons and radiologists.

Keywords: Emissary vein; Foramen ovale; Foramen of vesalius; Neurosurgery; Trigeminal neuralgia

Introduction

The sphenoidal emissary foramen/foramina (SEF), also known as the foramen of Vesalius, foramen Vesalii, foramen venosum, sphenoidal canaliculus, and canaliculus sphenoidalis, is an inconsistent foramen in the middle cranial fossa [1-4]. It is typically located anteromedial to the foramen ovale and posteromedial to the foramen rotundum [5]. The SEF transmits a small emissary vein (of Vesalius) which serves as a venous connection between the cavernous sinus and the pterygoid venous plexus and, therefore, is of clinical importance due to its potential to transmit an infected thrombus from an extracranial location to the cavernous sinus [6]. Henderson (1966), however, has suggested that the SEF, houses a dural sinus, rather than an emissary vein [7]. Other structures including a small nerve, the nervoulus sphenoidalis lateralis, may be transmitted through the SEF [8]. Likewise, in 20% of cases, the SEF transmits an accessory meningeal artery [9].

Reports have noted the occurrence of the SEF to range from 16.1% [10] to 79.7% [11] of skulls. Occasionally, the SEF has been reported to be duplicated unilaterally. Unilaterally duplicated SEF have been reported to occur in between 0.06% [12] to 13.8% [11] of skulls. To date, only one study has mentioned a bilateral duplication of the SEF, noting occurrence in 2 of 123 skulls (1.62%) [11].

Case Report

Examination of the middle cranial fossae of a dry human skull, housed in the anatomical collection within West Virginia University School of Medicine, revealed a bilateral duplication of the SEF (Figure 1A).

Figure 1: A) Cranial view of the sellar region and bilateral middle cranial fossae demonstrates a bilateral duplication of the sphenoidal emissary foramen. (Ant.SEF: anterior-most sphenoidal emissary foramen; Pos.SEF: posterior-most sphenoidal emissary foramen; FO: foramen ovale; FS: foramen spinosum). B) Cranial view of the sellar region and bilateral middle cranial fossae with lines demonstrating the relative spatial relationships and bilateral symmetry of the foramina. (CP: line drawn in the coronal plane from the anterior-most aspect of the foramen ovale that traverses the anterior-most sphenoidal emissary foramen; TL: tangential line drawn from the medial aspects of the foramen spinosum and foramen ovale that traverses the sphenoidal emissary foramina; L: perpendicular line from the tangential line that, itself, is tangential to the anterior aspect of the foramen ovale which traverses the posterior-most sphenoidal emissary foramen)
All SEF were cannulated with a thin copper wire to assess patency and all four SEF were found to be patent. All SEF were located medial to foramina ovale. The anterior-most SEF on each side was located directly medial to the anterior-most aspect of the foramen ovale (Figure 1B). If one were to make a line tangential to the medial borders of the foramen spinosum and foramen ovale, each SEF would fall on the line (Figure 1B). Also, if a perpendicular line were made with the aforementioned tangential line that is, itself, tangential to the foramen ovale, the lines would intercept at the location of the posterior-most SEF (Figure 1B). The morphometric measurements of the foramina can be found in Table 1.

<table>
<thead>
<tr>
<th>Side</th>
<th>Foramen</th>
<th>Area (mm²)</th>
<th>Perimeter (mm)</th>
<th>Maximum diameter (mm)</th>
<th>Minimum diameter (mm)</th>
<th>Lateral distance from the foramen ovale to the SEF</th>
<th>Distance from the foramen spinosum to the SEF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left</td>
<td>Ant. SEF</td>
<td>0.16</td>
<td>2.14</td>
<td>0.31</td>
<td>0.91</td>
<td>15.99</td>
<td>33.34</td>
</tr>
<tr>
<td></td>
<td>Pos. SEF</td>
<td>0.51</td>
<td>3.05</td>
<td>1.98</td>
<td>1.28</td>
<td>13.99</td>
<td>32.61</td>
</tr>
<tr>
<td></td>
<td>Ovale</td>
<td>13.08</td>
<td>18.45</td>
<td>6.54</td>
<td>2.78</td>
<td>23.51</td>
<td>24.09</td>
</tr>
<tr>
<td>Right</td>
<td>Ant. SEF</td>
<td>0.54</td>
<td>4.44</td>
<td>1.39</td>
<td>0.60</td>
<td>10.42</td>
<td>33.34</td>
</tr>
<tr>
<td></td>
<td>Pos. SEF</td>
<td>0.17</td>
<td>2.00</td>
<td>0.78</td>
<td>0.56</td>
<td>11.36</td>
<td>29.87</td>
</tr>
<tr>
<td></td>
<td>Ovale</td>
<td>14.18</td>
<td>18.38</td>
<td>7.22</td>
<td>2.77</td>
<td>20.00</td>
<td>24.40</td>
</tr>
</tbody>
</table>

Table 1: Morphometric measurements of the sphenoidal emissary foramina (SEF)

Discussion

Unilateral SEF may occur in as many as 36% of skulls [13]; however, the occurrences of unilateral duplicated SEF are rarer, ranging from 0.06% [12] to 13.8% [11]. In this study, a bilateral duplication of the SEF was noted in one of 83 skulls (1.2%), though, judging by the paucity of its mention in anatomical literature, its occurrence is likely only one other study has documented a bilateral duplication of the SEF, which cannulate the foramen ovale including percutaneous treatment procedures utilizing fluoroscopic guidance to cannulate the foramen ovale. Likewise radiologists/neurosurgeons should be cognizant of bilateral symmetry, even as it applies to the SEF during computed tomography and magnetic resonance imaging screening procedures. Knowledge of the potential occurrence of a bilateral duplication of the SEF may prevent unwanted surgical complications including temporal hematoma [18]. Another report also reported mistakenly cannulating the SEF in seven of 200 (3.5%) percutaneous procedures [19].

The case presented herein documents a bilateral duplication of the SEF with all SEF located directly medial to the foramen ovale, contrary to reports noting the SEF to be anteromedial to the foramen ovale. Therefore, neurosurgeons should be aware of the possibility of one or two SEF existing directly medial to the foramen ovale during percutaneous procedures utilizing fluoroscopic guidance to cannulate the foramen ovale. Likewise radiologists/neurosurgeons should be cognizant of bilateral symmetry, even as it applies to the SEF during computed tomography and magnetic resonance imaging screening procedures. Knowledge of the potential occurrence of a bilateral duplication of the SEF may prevent unwanted surgical complications including temporal hematoma.

Acknowledgements

The research was supported by funding from two West Liberty University Faculty Development Grants and the WV Research Challenge Fund [HEPC.dsr.14.13].

References