Binucleation of Drosophila Adult Male Accessory Gland Cells Increases Plasticity of Organ Size for Effective Reproduction

Kiichiro Taniguchi1, Akihiko Kokuryo2, Takao Imano3, Ryunosuke Minami4, Hideki Nakagoshi5 and Takashi Adachi-Yamada2,4,*

1Department of Life Science, Faculty of Science, Gakushuin University, Tokyo 171-8588, Japan
2Institute for Biomolecular Science, Gakushuin University, Tokyo 171-8588, Japan
3Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
4Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan

Abstract

Although most animal cells possess only a single nucleus, some cells such as myocytes and hepatocytes show sporadic occurrences of multiple nuclei. The Drosophila adult male accessory gland, an internal reproductive organ for production of seminal fluid components, displays an exceptional columnar epithelium where all cells have two nuclei. Despite this striking feature, no adaptive significances to account for binucleation have been proposed.

We demonstrate that one possible purpose of binucleation is enabling plasticity in organ size. To compare various cytological traits between binucleate and mononucleate states, we artificially converted the cellular state from the binucleate state to either the endoreplicated mononucleate or pseudodivided mononucleate state in the accessory gland epithelium by genetically manipulating the spindle assembly checkpoint. Depending on the flies’ age and mating and feeding conditions, the apical area of the binucleate cells enlarges compared with that of endoreplicated mononucleate cells. On the other hand, the apical area shrinks after mating compared with that of divided mononucleate cells. Consequently, this wide range of apical area size in binucleate cells increases the plasticity in organ size compared with that in endoreplicated mononucleate and divided mononucleate cells. The highly plastic features in an organ composed of binucleate cells should lead to higher rates of reproductive success in response to nutrition uptake and mating frequency. Similar plasticity might also be beneficial in hepatocytes and myocytes, both of which show great variability in cell size. Our results provide direct evidence that cell-size plasticity is a basis of multinucleation in animal cells.

Keywords: Drosophila; Male accessory gland; Binucleation; Multinucleation; Organ size; Cell shape; Reproduction

Abbreviations: ACPs: Accessory Gland Proteins; ISC: Intestinal Stem Cell; EB: Enteroblast; EC: Enterocyte; SAC: Spindle Assembly Checkpoint; AE: After Elosion; Cora: Coracle; Ac-H3: Acetylated Histone H3

Introduction

Although most cells that compose animal organs contain single nuclei, certain kinds of cells are multinucleated. Multinucleation is known to be caused by either cell fusion (as in skeletal muscle or placental trophoblast) or mitosis without cytokinesis (as in hepatocytes or myocytes) and is thought to be a process of tissue/cell growth. In this case, the numbers of chromosome copies and nuclei in each cell increase. In other cases of tissue/cell growth such as cell division and endoreplication (chromosomal doubling without karyokinesis), only a single nucleus per cell exists. It is known that binucleation of hepatocytes or myocytes occurs according to the growth of individuals. In rat hepatocytes, the proportion of binucleate cells increase in the transition from suckling to weaning, and the rate of binucleation is controlled by nutrient signaling [1]. In rat myocytes, cells predominantly binucleate by 10 days after birth [2]. However, the functional benefits for organs by increasing the number of nuclei are largely unclear.

To address this question, we used the Drosophila male accessory gland, which is composed of binucleate cells, as a model for studying binucleation (Figure 1A and 1B). The male accessory gland increases reproductive success; it produces more than 80 peptide species (accessory gland proteins (ACP)) and sends them together with sperm into the female reproductive organs [3]. The ACPs stored in female spermatheca alter various female reproductive phenotypes such as frequency of oviposition and rejection of further mating with other males [3]. The accessory gland lobe is composed of paved and predominant (ca. 1000) main cells and scattered (ca. 40) secondary cells [4]. Both cell types are thought to play distinct but as yet unknown roles, and they are both binucleate [4] (Figure 1B).

Here, we show the benefit of the binucleate state for reproductive success in the male accessory gland. We found that binucleation enables the cells to have a wider range of flexibility in size and shape by changing the position of the two nuclei. This cellular plasticity provided great variability in the luminal size of the organ, depending on nutritional and mating states.

Materials and Methods

Drosophila strains

Canton-S and w1118 were used as wild-type strains. chico2176, a deletion mutant lacking the coding region of chico [5] was used. The following Gal4 expressing lines were used: esgGAL4 (esg-Gal4), Gal4 Enhancer Trap Insertion Database (GETDB), http://kyotofly.kit.jpstocks/GETDB/getdb.html , which expresses Gal4 in the adult secondary cells, and fngGAL4 (fng-Gal4, GETDB), which expresses

*Corresponding author: Takashi Adachi-Yamada, Department of Life Science, Faculty of Science, Gakushuin University, Tokyo 171-8588, Japan, Tel: +81-3-3988-0221; Fax: +81-3-5992-1029; E-mail: Takashi.Adachi-Yamada@gakushuin.ac.jp

Received December 01, 2011; Accepted December 06, 2011; Published December 08, 2011


Copyright: © 2012 Taniguchi K, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Gal4 in the entire pupal accessory gland epithelial cells. AyGal4 was described previously [6]. hs-FLP was used as the source of the FLP recombinase [7]. UAS-InR.IR (UAS-InR.RNAi) and UAS-mad2.IR (UAS-mad2.RNAi), express inverted repeat RNAs, which form hairpin loop double strand RNA for InR and mad2, respectively. Histone H2A-variant::RFP [8], were described previously. The following Drosophila species were obtained from Kyorin University (Japan) and were used in the evolutionary analysis: D. simulans, D. erecta, D. ananassae, D. pseudoobscura, D. persimilis, D. willistoni, D. virilis and D. grimshawi. All fly stocks except for D. grimshawi were maintained on a standard fly medium at 25°C. The samples of D. pseudoobscura in the evolutionary analysis: species were obtained from Kyorin University (Japan) and were used in the evolutionary analysis: D. simulans, D. erecta, D. ananassae, D. pseudoobscura, D. persimilis, D. willistoni, D. virilis and D. grimshawi. All fly stocks except for D. grimshawi were dead carcasses stored in ethanol.

Immunostaining and microscopic analysis

The adult dissected accessory glands were fixed under a severe condition (4% formaldehyde (Wako) /PBS for 30 minutes) and stained with standard immunostaining protocols. For the DNA staining, the fixed samples were pretreated with RNase (Wako, 0.025mg/ml) for 15 minutes at 37°C. Propidium iodide (Invitrogen, 1:500) or TO-TO-3 iodide (Invitrogen, 1:1000) were used for DNA staining. The following primary antibodies were used: Guinea Pig anti-Flag paired polyclonal antibody (Asian Distribution Center for Segmentation Antibodies [9], 1:200), Rabbit anti-acetyl-Histone H3 (Ac-H3) polyclonal antibody (Millipore, 1:200), Mouse anti-Coracle (Cora) monoclonal antibody (Developmental Studies Hybridoma Bank, 1:20). The following secondary antibodies were used: Cy3-conjugated Donkey anti-Mouse IgG (Jackson ImmunoResearch, 1:200), Cy2-conjugated Donkey anti-Mouse IgG (Jackson ImmunoResearch, 1:200), Cy5-conjugated Donkey anti-Mouse IgG (Jackson ImmunoResearch, 1:200), Cy3-conjugated Donkey anti-Rabbit IgG. Stained samples were mounted in 50% glycerol/PBS containing 0.25 % n-propyl gallate (Wako) and observed with an ECLIPSE TE2000-U with a Digital ECLIPSE C1 and C1Si confocal system (Nikon). Images were processed using EZ-C1 Gold Version 3.70 (Nikon), Adobe Photoshop CS3 Extended (Adobe Systems) and Adobe Illustrator CS3 (Adobe Systems).

Measurement of fluorescent Intensity of Histone H2A-Variant::RFP

To analyze the intensity of RFP, the color images were converted into gray-scale images, and the "Integrated Density" data from Image J 1.410 (National Institute of Health, http://rsb.info.nih.gov/iij/) were used to measure the fluorescent intensities. The sums of the values obtained from the z-section image series were taken to be "fluorescent intensities" of the DNA in nuclei (Figure S1).

Construction of Acp70A::mRFP lines

The mRFP fragment was excised from pYub84B-mRFP (gifted from K. Matsuno) and subcloned into pattB (FlyC31, http://flyc31.frontiers-in-genetics.org/) vector to construct pattB-mRFP. The region from -598 to +4 of Acp70A, which includes its enhancer element and core promoter, was amplified with PCR and subcloned into pattB-mRFP to construct pAcp70A::mRFP-attB (Figure S2A). Transgenic lines carrying pAcp70A::mRFP-attB was generated with γC31-mediated site-specific integration [10].

Measurement of apical area sizes of cells and horizontal distances between two nuclei

Outlines of cells and nuclei were labeled with anti-Cora antibody and Propidium iodide, respectively, and the z-section images were stacked. The areas encircled by anti-Cora antibody labeling (plasma membrane) are taken to be the apical areas of cells, and the distances between the centroids of two nuclei were taken to be the horizontal distances between the two nuclei, by using Image J 1.410 (National Institute of Health). The ratios of each datum value to the mean of all data values in 4N×2 cells were used to normalize inconsistencies in accessory gland volumes between individuals. To test statistical significance, regression analyses of both data sets were performed. Coefficient of correlations (r-values), linear regressive equations, p-values, and t-values were also calculated.

Set-up for mating males with females

Adult males of Canton-S or UAS-mad2.RNAi/+; frg-Gal4/ + at 9 days AE were added to a vial containing a large number of adult virgin females, and the vial was incubated at 25°C for 12 hours.
Results and Discussion

Binucleation of male accessory gland epithelial cells are evolutionally conserved

We first characterized polyploidy of male accessory gland epithelial cells. We measured the fluorescent intensity of Histone H2A variant::RFP in each nucleus. For normalization of intensities, the adult midgut intestinal stem cells/enteroblasts, early-enterocytes, and enterocytes were used as references of diploid, tetraploid, and octaploid cells, respectively (supplementary Figure S1A-C and S1F). As a result, the accessory gland epithelium of 1D-K and 1D'-K'. It is also known that binucleation in the male accessory gland also occurs in the mid-fly [11] and Queensland fruit fly [12]. These results suggest that binucleation in male accessory gland epithelium is an evolutionally conserved state in a wide variety of fruit flies and is expected to have certain functional benefits for this organ.

Number of nuclei is not involved in the functional differentiation of male accessory gland epithelial cells

What is the physiological significance of binucleation? Does binucleation bring more benefits to cells than endoreplication or cell division do? Do binucleate cells show highly produce ACPs than these mononucleate cells? To address these questions, we compared various cytological traits between cells with different nuclear phenotypes. In the accessory gland cells of a hypomorphic polo mutant flies with various nuclear phenotypes were produced (Figure 2) by defects in chromatid segregation [13], we did not find any differences in the gene expression characteristics between normal binucleate and abnormal nuclear phenotype cells (no differences in histone acetylation [14] in chromatin modification (Figure 2B-D compared with 2A), expression of transcription factor Paired [15] which is important for accessory gland function (Figure 2F-H compared with 2E), or expression of Acp70A [16] (Figure 2I-L compared with 2I)). These results indicate that the number of nuclei did not affect proper gene expression.

Positions of two nuclei correlate with conversion of cell-shape from squamous to cuboidal

The accessory gland enlarges its volume to retain more ACPs; thereby, increasing reproductive success [17-19]. In contrast, in certain starved and/or postmating conditions, the accessory gland represses its cell growth and/or shrinks the apical area of the cells to reduce seminal fluid storage in order to save systemic energy (starved condition) and empty out its cavity (postmating condition) (supplementary Figure S3A-F). To adapt to these various situations, it would be beneficial if the accessory gland could easily change its volume. We found that the binucleate cells changed the size of their apical area, which contributed to changing the luminal volume of the organ, through a shift in the three-dimensional positions of the two nuclei. In fact, the accessory glands and their main cells showed great variability in the apical area and three-dimensional positions of the two nuclei, depending on age and feeding conditions (Figure 3A-E and data not shown). Regression analysis also indicated a positive correlation between the change in the position of the nuclei and cell apical area (Figure 3B and 3C). After mating to exhaust seminal fluid, the accessory glands apparently shrunk as a result of nuclei overlapping and layering (Figure 3E).
Binucleation is an effective strategy for higher plasticity in accessory gland size

Given that the cell-apical area correlated with the positions of the two nuclei, we hypothesized that the binucleate cells provide more plasticity in the apical area compared with endoreplicated or divided mononucleate cells. To examine this hypothesis, we induced both cell types by knockdown of mad2, a gene encoding a factor of the spindle assembly checkpoint (SAC), which monitors the attachment of microtubules with kinetochores to ensure equal segregation of chromatids [21]. It has been reported that Drosophila SAC does not function in standard mitosis as frequently as in mammals unless the spindle function is perturbed [22]. However, we discovered that accessory gland binucleation required the SAC function during chromosome segregation. Therefore, approximately half the population of the main cells exhibited a mononucleate state through simple knockdown of mad2 under a non-stressful condition (Figure 4C). These mononucleate cells showed two major surges in their DNA content; one was octaploid and the other tetraploid (supplementary Figure S4). In the octaploid mononucleate cells (“endoreplicated mononucleate cells”), karyokinesis (as well as cytokinesis) was assumed to be skipped at the final M-phase. In the tetraploid mononucleate cells (i.e., pseudodivided mononucleate cells), karyokineses in the final M-phase and subsequent endoreplication were assumed to be skipped.

The apical size of cells and lumenal size of the organ (supplementary Figure S5) were measured just after the main cells had fully expanded before mating on day 9 after eclosion (Figure 4C). The measurements showed that the lumenal size of the organ composed of the binucleate cells was approximately 114% (=100 x 100/88) of the organ composed of endoreplicated mononucleate cells (Figure 4C and 4D). However, pseudodivided mononucleate cells caused an even larger increase in organ size than binucleate cells (Figure 4C and 4D’). Nevertheless, this may not automatically mean that cell division is the best option for reproductive success because higher retention of ACPs does not always provide advantages to males in, for example, female-absent, starved, and/or postmating states. That is, the lumenal size of the organ composed of the binucleate cells was approximately 58% (=100 x 100/171) of that composed of pseudodivided mononucleate cells after mating on day 9 after eclosion. Thus, cell division does not seem to be an appropriate strategy for cell shrinkage (Figure 4D and 4D’). These results suggest that binucleation is an effective strategy for higher plasticity in the apical area of cells to increase reproductive success (Figure 5).

Based on the above findings, a wider range of plasticity in cell size seems to be a unique benefit of binucleation. Insulin-regulated binucleation was reported in mammalian liver, which dramatically changes size depending on dietary conditions [1,23]. The findings presented here are new insights into the significance of binucleation in view of the link between cell shape and organ size control.
Acknowledgements

We thank T. Aigaki, the Bloomington Stock Center, Kyoto Stock Center, KYORIN-fly, the National Institute of Genetics, and the VDRC Stock Center for the fly stocks; Y. Hiromi, the Asian Distribution Center for Segmentation Antibodies, KYORIN-fly, the National Institute of Genetics, and the VDRC Stock Center for the antibodies. We also thank BestGene Inc. for generating new transgenic fly lines. We are grateful to M. F. Wolfner and J. Sitnik for their helpful discussion.

References


