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Introduction
Chickpea (Cicer arietinum L.) is a major source of human and 

animal food and the world’s third most important pulse crop after 
beans (Phaseolus vulgaris L.) and peas (Pisum sativum L.) [1]. It is 
mostly grown under rain-fed conditions in arid and semi-arid areas 
around the world [2]. Pakistan is the third major chickpea producer in 
the world after India and Turkey [3]. During the year 2010, it was grown 
on about 1.05 million hectares with a total production of 0.50 million 
tons [4]. The average yield of chickpea was about 0.47 t ha-1 which is far 
lower than its potential yield of 4 t ha-1. A number of constraints such as 
infertile and marginal lands, drought or excessive moisture, increasing 
temperature, weeds and build up of pathogenic fungal pathogens are 
responsible for this yield gap in chickpea [5,6].

There are about 30 diseases reported in chickpea. Three root 
diseases, i. e. Fusarium wilt, black root rot and dry root rot caused by 
Fusarium oxysporum, Fusarium solani and Macrophomina phaseolina, 
respectively, have greater significance. It was reported that Fusarium 
wilt caused 10-15% yield losses in chickpea [7]. While black root rot 
(another serious disease) caused 60-70% yield loss [8]. Dry root rot 
caused by M. phaseolina is endemic in temperate and tropical regions 
of the world with the capacity to infect over 500 different host crops [9]. 

Although many control measures have been developed to manage 
these diseases, the soil borne nature persistence in soil and a wide host 
range make control difficult. Using resistant varieties is one of the 
most effective methods. However, frequent changes in races of some 
pathogen are a great problem as this usually results in breakdown of 
host resistance. Other control measures involve cultural practices, 
biological and chemical control. Of these biological control has become 
as an alternative strategy for disease management, which is also 
ecology-conscious and environmentally friendly [10]. The rhizosphere 
provides the initial barrier for the roots against pathogen attack [11]. 
Plant growth-promoting rhizobacteria (PGPR) in the rhizosphere 

have the ability to improve plant growth by colonizing the root system 
and pre-empting the establishment of and suppressing deleterious 
microorganisms [12,13]. Rhizosphere microorganisms provide 
biocontrol through mechanisms such as production of antibiotics 
[14,15], iron sequestering compounds, siderophores [16,17], 
extracellular hydrolytic enzymes [18], other secondary metabolites 
such as hydrogen cyanide (HCN) [19-22] and induced systemic 
resistance [23]. The individual as well as combined effects of some 
rhizobacterial isolates might be helpful to develop suitable strategies to 
reduce infection of some root pathogens in chickpea.

The objectives of this study were to evaluate the bioefficacy of single 
or mixture of two or three rhizobacterial isolates against the pathogens 
infecting chickpea roots and consequently their effects on growth and 
development of chickpea. Two application methods (seed treatment 
and soil application) of three rhizobacterial isolates as well as single or 
combined applications were studied. 

Materials and Methods
Isolation of F. oxysporum, F. solani and M. phaseolina 

Dilution technique was used for the isolation of fungal cultures as 
described earlier [24]. The fungal cultures of F. oxysporum, F. solani 
and M. phaseolina were obtained in composite forms, purified and 
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identified [25]. Wet sieving and dilution technique [26] was used for 
isolation of Macrophomina phaseolina with its identification done 
according to keys described by Barnett and Hunter [27].

Pathogenicity test of fungi

Seeds of chickpea cultivar Bital-98 were surface sterilized in 70% 
ethanol (EtOH) (v/v) for 1 min followed by 1% sodium hypochlorite 
(NaOCl) for 5–10 min, with agitation as described by Ali et al. [28]. 
Fungal inocula were prepared according to a protocol described by 
Riker and Riker [29] with modifications by collecting mycelia on 
blotting paper to remove excess water and nutrients. The inoculum was 
prepared by 100 g wet mycelium and adding to 1 L distilled water. Ten 
milliliters of each fungal suspension was applied to each plant.

Isolation of rhizobacteria

The rhizospheric soil of groundnut plant was collected followed by 
isolation of rhizobacteria from the soil sample. 10 g of soil was added 
to 100 ml sterile water in flasks and shaken on a rotary shaker at 150 
rpm for 30 min. 0.1 ml of the suspension from serial dilutions (10-5, 10-6 
and 10-7) was plated on Tryptic Soy Agar (TSA) media and incubated 
at 28°C for 48 h. Resulting colonies were purified by streaking. Re-
streaking of the single colonies was performed as long as purified 
strains were obtained.

In vitro evaluation of antagonistic rhizobacteria

Antifungal activity of rhizobacterial isolates against F. oxysporum, 
M. phaseolina and F. solani was determined using the dual-culture 
plate method [30]. Individual PDA plates were inoculated with F. 
oxysporum, F. solani and M. phaseolina separately and challenged with 
individual rhizobacterial isolates. Rhizobacteria were inoculated in the 
center of the petri plate and the fungi were inoculated at a minimum 
separation of 1 cm between fungus and bacteria. The test was performed 
with three replications per treatment. The plates were incubated at 25 
± 2°C. The diameter of inhibition zones between the rhizobacteria and 
fungal pathogens was recorded in centimeters 72 hrs post incubation.

Identification of rhizobacteria by 16S rRNA gene sequencing

DNA extraction was performed as described by Ali et al. [31]. 
The amplification of the 16S rRNA gene was carried out by using 
universal primers (9F: 5′́AGTTTGATCCTGGCTCAG-3′; 1510R and 
5′́-GGCTACCTTGTTACGA-3′́) as described by Katsivela et al. [32]. 
The amplification program for the full-length 16S rRNA gene consisted 
of an initial denaturation at 94°C for 2 min, followed by 30 cycles of 
denaturation at 94°C for 2 min, primer annealing at 55°C for 1 min 
and primer extension at 72°C for 2 min, followed by a final extension at 
72°C for 10 min in a thermocycler (SIGMA Laborzentrifugen GmbH, 
Germany). Amplified PCR products of the 16S ribosomal gene were 
separated on 1% agarose gel in 0.5× TE (Tris-EDTA) buffer containing 
2 μL ethidium bromide (20 mg mL-1). The λ HindIII ladder was used as 
a size marker. The purified PCR products were sent to MACROGEN 
(Seoul, Korea) for sequencing. Phylogenetic analyses were performed 
using bioinformatics software MEGA-5 [33]. CLUSTAL X and BioEdit 
were used for sequence alignment and comparisons, respectively. The 
DNA accession numbers of each strain were obtained from the DNA 
Data Bank of Japan (DDBJ). The phylogenetic relationships of RH-
31, RH-32 and RH-33 strains were performed with its closely related 
taxa on the basis of the16S rRNA gene sequence. Cluster analysis was 
performed having bootstrap value 500 using MEGA-5 software. For 
RH-31, the tree was constructed on the basis of the neighbor-joining 
method using Thermobacillus xylanilyticus (AJ005795) as an out group. 

For RH-32, the tree was constructed on the basis of the neighbor-
joining method using Bacillus cereus (AE016877) as an out group and 
for RH-33, the tree was constructed on the basis of the neighbor-joining 
method using Acinetobacter calcoaceticus (Z93434) as an out group.

Colony forming units (cfu) mL-1 in suspension

After making the suspension of biological antagonists, population 
of bacteria were counted by dilution plate method as described earlier 
[20]. One mL suspension was poured on Nutrient Agar (NA) medium 
and incubated at 28 oC for 3 to 7 days. Bacteria growing on NA plates 
were counted and multiplied by the dilution factor which gave cfu/mL 
of bacteria. 

Colony forming unit (cfu) per seed

Ten seeds were treated with suspension of microbial antagonists. 
Following treatment these seeds were transferred to test tubes 
containing 10 mL sterilized water. The test tubes were vigorously 
shaken and dilution series made as described by Haq et al. [24]. A serial 
dilution and plating method was used for determining the bacterial 
colony forming units of bacteria which was calculated by using the 
following formula: 

cfu of bacteria per seed=No. of colonies of bacteria × dilution factor

Seed treatment and soil application of rhizobacteria

Chickpea seeds were surface sterilized with 6% sodium hypochlorite 
(NaOCl) for 5–10 min, with agitation as described by Ali et al. [28] 
for both lab and greenhouse studies. The seeds were sown in sterilized 
soil with a 3:1:1 composition of soil:sand:compost. Two methods of 
rhizobacterial application seed treatment vs soil application were 
adopted. For seed treatment the seeds were soaked in King’s B broth 
medium containing bacterial population 1 x 107cfu mL-1 for 30 minutes 
and then dried shortly before seeding. For soil application method, 10 
mL of bacterial suspension (1 x 107cfu mL-1) was added, with the help of 
test tube, in the pot soil prior to seeding. Following seed setting, 5 mL 
inoculum of each fungal culture (2x106 propagules/mL) was applied in 
the root zone of chickpea plant and plants were kept at 28 ± 2°C for 40 
days. Treatments of antagonistic rhizobacterial isolates were applied 
individually and in combination both in laboratory and greenhouse 
studies at the time of sowing, 1, 2 and 3 weeks after seeding. The 
control was treated with distilled water. The experiment was performed 
in a randomized complete design (RCD) with three replications per 
treatment. 

Data collection

The data of disease incidence (DI), biocontrol efficiency (BCE), and 
dry weight of root (DWR) was recorded every week till 4th week of the 
study period.

Biological control efficacy (BCE) was calculated using the following 
formula [34]:

BCE (%)=[D.I.(c) – D.I. (t)/D.I.(c)] x 100

D.I. (c)=Disease incidence on control

D.I. (t)=Disease incidence on treatment group

Disease incidence (DI) was calculated using the following formula 
[34]:

DI (%)=[Number of wilted plants/Total number of plants] x 100
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Statistical analysis

Standard procedure was adopted for recording data on disease 
incidence and plant growth and development. Data collected were 
statistically analysed by using Genstat 9.2 (VSN international Ltd, UK) 
statistical package for ANOVA on disease incidence, biological control 
efficiency and root dry weight, followed by a Posthoc LSD test for 
comparison of means. Regression analysis was done to determine the 
relationship between various treatments and disease incidence.

Results
Phylogenetic analysis

The rooted trees showing the phylogenetic relationship of the 
isolates with closely related taxa on the basis of 16S rRNA gene 
sequence are shown (Figure 1a-1c). All three rhizobacterial isolates 
showed > 99% sequence identity to the closely related neighbors. Strain 
RH-31 showed > 99% similarity to Paenibacillus illinoisensis, RH-32 

 

 

Figure 1: Rooted tree showing the phylogenetic relationships of RH-31, RH-32 and RH-33 with its closely related taxa on the basis of 16S rRNA gene sequence. The 
cluster analysis was performed having bootstrap value 500 using MEGA-5 software (a) RH-31; the tree was constructed on the basis of the neighbor-joining method 
using Thermobacillus xylanilyticus (AJ005795) as an out group. (b) RH-32; the tree was constructed on the basis of the neighbor-joining method using Bacillus cereus 
(AE016877) as an out group. (c) RH-33; the tree was constructed on the basis of the neighbor-joining method using Acinetobacter calcoaceticus (Z93434) as an out 
group.
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showed > 99% similarity to Bacillus subtilis and strain RH-33 showed 
> 99% similarity to Pseudomonas psychrotolerans. The Gene Bank/ 
DDBJ accession numbers for the 16S rRNA gene sequences for strains 
RH-31, RH-32 and RH-33 are AB773828, AB773829 and AB773830, 
respectively.

In vitro evaluation of rhizobacteria

The rhizobacterial isolates showed strong antagonistic activities 
against the three fungal pathogens tested in this study (Table 1). The 
isolate RH-33 showed highest levels of inhibition against M. phaseolina 
(1.65 cm) whereas the diameter of inhibition zones against F. 
oxysporum and F. solani was 1.32 cm and 1.28 cm, respectively (Figure 
2). The isolate RH-32 was found best against F. solani with a 1.50 cm 
zone of inhibition as compared to F. oxysporum and M. phaseolina 
(1.17 cm and 1.00 cm zone of inhibition, respectively). However, the 
isolate RH-31 had at 1.19 cm; a zone against F. oxysporum (Table 1). 
The pathogens isolated from disease samples were re-isolated in the 
pathogenicity test which confirmed the pathogen to be the actual cause 
of the disease. The pathogens were pathogenic that incited disease in as 
evident from the symptoms that appeared on the roots.

Evaluation of rhizobacteria against fungal pathogens

Disease incidence (DI): The application of bacterial isolates 
showed a trend in reducing disease incidence (DI) from 1st week to 
4th week of study as compared to control treatment both in laboratory 
and green house experiments (Table 2). The combined application of 
the three isolates showed more suppression of pathogens as compared 
to their sole application. In laboratory study, DI was 0.1-0.5% in mixed 
inoculation treatment as compared to control (12-47% DI). Strain RH-
33 was less effective as compared to other strains or their combined 
applications. However, in the greenhouse study mixed application of 
the isolates appeared most effective against the pathogens (0.1-14% DI) 
where 15-54% DI was observed in control plants. Both seed treatment 

and soil applied application methods showed significantly affected DI. 
A negative relationship was found between DI and treatments (Figure 
3).

Biocontrol efficiency: The isolates RH-31, RH-32 and RH-33 
showed significant effects for biocontrol efficiency starting from 1st 
week to 4th week of study (Table 2). Both in the lab and green house 
experiments, the combined application of the isolates was more 
promising as compare to their sole application. In laboratory study, 
the biocontrol efficiency was 88-99% in mixed inoculation treatment 
as compared to control treatment (Table 2). The sole application of 
bacterial strain RH-33 proved comparatively less efficient (28-36%). 
Both seed treatment and soil applied application methods resulted 
in highly significant effect on control efficiency (Table 2). In the 
greenhouse study, combination of three isolates performed best with 
maximum control efficiency (74 - 99%) over control treatment (Table 
2). However the sole application of all three bacterial strains appeared 
comparatively less efficient (26-44%) as compared to their mixed 
application. The pathogens were significantly affected by bacterial 
isolates. The treatment T8 (RH-33 + RH-32 + RH-31) expressed the 
best control against the pathogens with 100% efficacy while T2, T3 and 
T4 (sole application of RH-31, RH-32, RH-33) exhibited less efficiency 
against fungal pathogens.

Root dry weight: The combined applications of bacterial isolates 
showed better effect on root dry weight of chickpea plants starting from 
1st week up to 4th week of study over control treatment (Table 3). The 
combined application of three isolates led to maximum root growth 
and dry weight both in lab scale (0.04-0.2 g) and the greenhouse study 
(0.03-0.12 g) (Table 3). The sole application of all three bacterial strains 
showed comparatively less root growth 0.03-0.1g in in vitro study 
and 0.02 -0.09 g in green house study as compared to their combined 
application. Both seed treatment and soil applied application methods 
influenced root dry weight significantly (Table 3). The pathogens 

Isolates
Inhibition zone (cm)

F. oxysporum F. solani M. phaseolina
Control 0 0 0
RH-33 1.32a ± 0.12 1.28 ± 0.11 1.65 ± 0.16
RH-32 1.17 ± 0.12 1.50 ± 0.04 1.00 ± 0.18
RH-31 1.19 ± 0.05 0.91 ± 0.10 1.08 ± 0.15

aAverage of three pathogen (n=3). 
RH-33 strain showed highest activity for zone of inhibition against the pathogen M. phaseolina i.e. 1.65 cm
Control=No rhizobacterial inoculation.
RH-31=Paenibacillus illinoisensis.
RH-32=Bacillus subtilis.
RH-33=Pseudomonas psychrotolerans.

Table 1: Antagonistic activity of rhizobacterial isolates in terms of inhibition zone caused by fungal pathogens (Fusarium oxysporum, F. solani and Macrophomina 
phaseolina).

Figure 2: Antagonistic activity of rhizobacterial isolates RH-33 in terms of inhibition zone (cm) caused by fungal pathogens Fusarium oxysporum, F. solani and M. 
phaseolina. A. RH-31 vs. F. oxysporum, B. RH-32 vs. F. solani. C. RH-33 vs. Macrophomina phaseolina.
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S.O.V Laboratory study Greenhouse study
Disease incidence (%) Bio control efficiency (%) Disease incidence (%) Bio control efficiency (%)
1st week 4th Week 1st week 4th Week 1st week 4th Week 1st week 4th Week

T1=Control 12.1*a 1 43.7 a 0 f 0 f 15 a 54 a 0 e 0 d
T2=RH-33 7.8 b 31.4 b 36 e 28 e 8 b 36 b 44 cd 32 c
T3=RH-32 7.7 b 29.7 b 36 e 32 e 9 b 39 b 35 d 26 c 
T4=RH-31 6.9 b 29.1 bc 44 d 34 e 9 b 36 b 37 d 30 c
T5=RH-33+RH-32 2.7 c 15.7 c 79 c 65 d 5 c 25 c 68 c 52 bc
T6=RH-33+RH-31 1.2 c 12.5 d 91 b 72 c 3 d 22 c 79 b 58 b
T7=RH-32+RH-31 0.6 cd 9.0 e 95 a 80 b 3 d 21 cd 81 b 58 b
T8=RH-33+RH-32+RH-31 0.1 d 5.6 f 99 a 88 a 0.1 e 14 d 99 a 74 a
Treatments (T) *** *** *** *** *** *** *** ***
Application methods (AM) *** *** ** *** * ** NS NS
Pathogen *** *** *** * *** *** ** **
Treatments X AM * NS NS ** NS NS NS NS
Treatments X Pathogen *** ** * NS *** NS * NS
Pathogen X AM NS NS NS NS NS NS NS NS
S.E. Treatment means(P) 0.4 0.9 3.45 2.3 0.47 1.7 3.9 3.0
LSD Treatment means (5%) 0.7 1.9 6.8 4.6 0.93 3.3 7.8 6.0

Average of three pathogen (n=3). Means not sharing a common letter differ significantly at P=0.05; NSNon-significant; LSD Least significant differences of means at P=0.05 
by ANOVA test. *P<0.05. **P<0.01. ***P<0.001. S.E.Standard error of treatment means.
Pathogens=Fusarium solani, Fusarium oxysporum and Macrophomina phaseolina.
RH-31=Paenibacillus illinoisensis.
RH-32=Bacillus subtilis.
RH-33=Pseudomonas psychrotolerans.

Table 2: Disease incidence and biological control efficiency as affected by various types of rhizobacterial isolates in individual and combined application method on the root 
pathogens in chickpea in terms of different times (days) in Laboratory and Greenhouse study.

Figure 3: Relationship between treatments and disease incidence, bio-control efficiency and root dry weight. The relationship was determined using average of three 
pathogens. T1=Control, T2=RH-33, T3=RH-32, T4=RH-31, T5=RH-33+RH-32, T6=RH-33+RH-31, T7=RH-32+RH-31, T8=RH-33+RH-32+RH-31 (RH-33=Pseudomonas 
psychrotolerans; RH-32=Bacillus subtilis; RH-31=Paenibacillus illinoisensis).
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also showed significant impact on root dry weight under different 
treatments. A positive relationship was observed between root dry 
weight and various treatments of bacterial isolates (Figure 3).

Discussion
Improvements in plant growth and disease resistance to a broad 

array of plant pests can be accomplished using PGPR [35]. PGPR 
including Bacillus, Paenibacillus and Pseudomonas spp. have been 
reported to stimulate the development of healthy root systems against 
fugal pathogens [36-40] by synthesis of antibiotics or iron sequestering 
compounds, siderophores or some other metabolites [36,37]. The 
present study was conducted to develop biocontrol strategy for 
control of root pathogens in chickpea through the application of 
different bacterial strains isolated from the groundnut rhizosphere. 
The rhizobacterial strains RH-31, RH-32 and RH-33 isolated from 
groundnut rhizosphere and were challenged against F. solani, F. 
oxysporum and M. phaseolina. We did not observe any significant effect 
on seed germination of the three isolates (data not shown). However, 
the results elucidated the antagonistic ability of the three isolates and 
growth promotion both in laboratory and greenhouse experiments. 
The study of zone inhibition implies that the limitation of growth of 
fungus in Petri dish plates was due to the production of antibiotics 
by these rhizobacterial isolates [41] (Best control was observed by 
the RH-33 isolate against M. phaseolina. Overall, RH-33 that showed 
> 99 % similarity to P. psychrotolerans (Figure 1c) was found best 
against all pathogens in dual culture plate tests (Figure 2). Beside the 
extracellular secretion of active molecules, cell density could also have 
governed the mycelial inhibition. Pseudomonas sp. inhibits mycelial 
growth of M. phaseolina and reduced the disease severity and also 
increased the biomass of the chickpea plants, shoot length, root length 
and protein content of the seeds [42,43]. The observations revealed 
that Pseudomonas spp. are quite effective in reducing the charcoal 
rot (M. phaseolina) disease both in the field and greenhouse and also 
increase seed yields significantly. Similar results have been found in 

the present study where the isolate RH-33 was found to be an effective 
biocontrol agent as it suppressed not only the charcoal rot pathogen 
i.e. M. phaseolina but also F. solani, F. oxysporum. In addition, it also 
increased the root fresh and dry weight of treated plants (Table 3). The 
antifungal activity of these isolates may be associated with production 
of antifungal metabolites [42]. The absorption of these antifungal 
metabolites by chickpea roots may be another reason for the reduced 
disease levels and increased plant growth [44].

In addition to Pseudomonas species, both Bacillus and Paenibacillus 
spp. express antagonistic activities by suppressing the pathogens 
under in vitro and in vivo conditions [36-38]. P. illinoisensis has been 
investigated against various soil borne pathogens like Phytophthora 
capsici and Rhizoctonia solani and results have to be proved it a 
potential antagonist. Paenibacillus illinoisensis has strong chitinolytic 
activity and efficient against Rhizoctonia solani [45]. The bacterium 
suppressed the symptom of damping-off in cucumber seedlings 
caused by R. solani, in a greenhouse trial. Three major chitinase bands 
with chitinolytic activity and release of N-acetyl-d-glucosamine were 
also found to be associated to P. illinoisensis [46]. In our study, P. 
illinoisensis have shown promising results in controlling the fungal 
root pathogens of chickpea with variable results against each pathogen. 
Similarly Bacillus subtilis is well known as efficient gram positive 
biocontrol bacteria as well as plant growth promoting agents due to 
production of growth hormones (Indole Acetic Acid) [47,48]. In this 
study B. subtilis showed suppressive ability as a biocontrol agent. 
Seed treatment method was found more promising as compared to 
the soil application method. The results of our study also confirmed 
the findings of Karimi et al. [49] that seed treatment is more reliable 
than the soil application method. All three isolates RH-31, RH-32 and 
RH-33 showed their ability to promote the growth of chickpea plants 
in the presence of the pathogen. These results showed that RH-33 (P. 
psychrotolerans) could be used as an effective biocontrol agent against 
chickpea diseases and potential plant growth promoter. The combined 
application of the isolates was found more effective than individual 
application. More disease suppression and vigorous growth patterns of 
the plants were observed throughout the experiment in seed treatment 
method. In general, treatments performed better in laboratory 
experiments than in greenhouse conditions as the controlled conditions 
favored PGPR growth. The sterilization of soil enabled the PGPR to 
fight against the specific inoculated organisms where in the field there 
are larger numbers of organisms that PGPRs have to deal with. The 
positive relationship between disease incidence and bacterial isolates 
further confirmed that mixed application of bacteria might have some 
synergistic effect and support each other for maximum reduction of 
pathogen in the rhizosphere. 

In conclusion, the present results report the potential for using 
bacterial isolates from rhizosphere of Pakistan as a strategy to suppress 
pathogens infecting chickpea roots. With the available knowledge, 
strategies for bacterial application could be optimized to reduce 
attack of fungal pathogens. This could lead to the development of a 
handy, economical and environmentally friendly product to combat 
pathogens infecting roots of chickpeas. Further studies into practical 
field applications are needed to substantiate our findings [50].
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