alexa Bio-Functionalized Nanoparticles – A Boon for Nano-drug Therapy | Open Access Journals
ISSN: 2157-7439
Journal of Nanomedicine & Nanotechnology
Like us on:
Make the best use of Scientific Research and information from our 700+ peer reviewed, Open Access Journals that operates with the help of 50,000+ Editorial Board Members and esteemed reviewers and 1000+ Scientific associations in Medical, Clinical, Pharmaceutical, Engineering, Technology and Management Fields.
Meet Inspiring Speakers and Experts at our 3000+ Global Conferenceseries Events with over 600+ Conferences, 1200+ Symposiums and 1200+ Workshops on
Medical, Pharma, Engineering, Science, Technology and Business

Bio-Functionalized Nanoparticles – A Boon for Nano-drug Therapy

Vinita Ernest1, Joyce Nirmala M2* and Nagarajan R2

1Department of Biotechnology, DKM College for Women (Autonomous), Vellore-1, TN, India

2Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai-36, TN, India

*Corresponding Author:
Nirmala MJ
Department of Chemical Engineering
Indian Institute of Technology Madras
Chennai, TN, India
Tel: +91 9677174200
E-mail: [email protected]

Received Date: April 01, 2017; Accepted Date: April 04, 2017; Published Date: April 06, 2017

Citation: Ernest V, Nirmala MJ, Nagarajan R (2017) Bio-Functionalized Nanoparticles – A Boon for Nano-Drug Therapy. J Nanomed Nanotechnol 8: e147. doi: 10.4172/2157-7439.1000e147

Copyright: © 2017 Ernest V, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Visit for more related articles at Journal of Nanomedicine & Nanotechnology

Bio-functionalized Nanoparticles

Bio-functionalization of nanoparticles has received enormous attention due to reduced toxicity as well as stability in colloidal state which prevents the nanoparticles from aggregation [1,2]. The biomolecules being used for functionalization vary from simple to complex macromolecules [3]. Starch, a natural polymer widely used in many industries as raw material was chosen for synthesis of silver nanoparticles as well as for functionalization. The one-pot synthesis was an easy procedure for both synthesis and functionalization [4]. The aldehyde group of starch serves as the functional group which attaches to the synthesized nanoparticles, thereby preventing aggregation. This stabilizes the nanoparticles, and no aggregation was visible for more than three months. A study was done to check the function and structure of starch using hydrolysis. The results were quite interesting in that the structure had no major deformities while still maintaining functionality [5].

Since the substrate starch is being fixed onto the surface of silver nanoparticles (AgNPs), the enzyme-substrate complex reaction was proceeding faster than expected. The blue-black colour disappeared 1.5X faster in the presence of AgNPs. The AgNPs were also functionalized with other enzymes to assess structural and functional properties. Lysozyme and amylase from different sources were functionalized over the AgNP, and the corresponding substrates were added and assessed. An increase in the enzymatic activity of enzymes was reported, and lysozyme along with AgNPs was found to have higher bactericidal properties than the free/unbound enzyme [6].

In all these studies recorded using various spectroscopic techniques, the structure of enzymes showed few modifications, whereas the function (enzyme activity) was unchanged while being pronounced in the presence of AgNPs [7]. Thus, bio-functionalization not only prevents aggregation but also helps in the immobilization of nanoparticles thereby improving the overall enzyme efficiency [8].

In summary, the immobilization of enzymes over the surface of AgNP has yielded a nano-bio-conjugate with synergistic antibacterial and catalytic properties. This strategy opens the door for the development of potential nano-drug delivery systems wherein the biofunctionalized nanoparticles are an immediate option availed in administration of drugs.

Acknowledgement

The authors thank DST-SERB, Government of India for all sources of support and funding.

References

Select your language of interest to view the total content in your interested language
Post your comment

Share This Article

Recommended Conferences

Article Usage

  • Total views: 288
  • [From(publication date):
    April-2017 - Jun 24, 2017]
  • Breakdown by view type
  • HTML page views : 230
  • PDF downloads :58
 

Post your comment

captcha   Reload  Can't read the image? click here to refresh

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords