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Introduction
Early diagnosis of cancer can dramatically increase healing 

probability. However, many of the methods used for cancer detection 
are time-consuming, invasive, and require skilled medical staff and/
or expensive detection systems such as computer tomography (CT), 
magnetic resonance imaging (MRI), endoscopy and ultrasonography 
[1-4]. In recent years much research is focused towards development 
of safe, reliable, non-invasive and inexpensive early detection schemes. 
A very promising route is finding specific and reliable biomarkers 
that are indicative of early stages of cancer. Biomarkers have shown 
potential for detection of various diseases, including cancer, by their 
identification in exhaled breath, blood and urine. Urine samples have 
high potential to contain biomarkers indicative of the physiological 
condition, indeed, biomarkers were identified for prostate and lung 
cancers [5,6], tuberculosis [7], exposure to toxic vapors [8] and diabetes 
mellitus [9]. Identification of biomarkers requires combining skills 
from different disciplines including analytical chemistry and statistical 
data analysis [10]. 

Cervical cancer was the fourth most common diagnosed cancer in 
women in 2012 and the fourth leading cause of cancer related death 
in women worldwide [11]. A cervical tumor develops from abnormal 
cell growth and has been linked to the human Papilloma virus (HPV) 
[12]. In many cases, infection with certain types of HPV is the first 
step in the progression from a normal cervix to cervical cancer. It is 
well established that sexually transmitted HPV induces the growth 

of abnormal cells that can become malignant [13,14]. As cancer cells 
form, cells of abnormal size and shape appear on the surface of the 
cervix and begin to multiply. Cervical cancer can be detected using 
a laboratory test that examines cervical cells obtained through a 
gynecological procedure called a Papanicolaou test (Pap test in short) 
or by a new technology based on liquid-based cytology [15]. The most 
effective way of screening for cervical cancer is through routine Pap 
tests or by testing for human Papilloma virus. Women who undergo 
routine screening have a better chance of early diagnosis and treatment 
[16,17].

Cervical dysplasia is the term used to describe the early growth of 
abnormal cells on the cervix that could progress to cancer. Cervical 
dysplasia is usually the first stage of cervical cancer, but women with 
cervical dysplasia do not necessarily develop cancer. Dysplastic cells 
look like cancer cells, but they are not considered malignant provided 
that they remain on the surface of the cervix and do not invade 
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Abstract
Introduction: Early diagnosis of cancer can dramatically increase healing probability. However many cancer 

detection methods are time-consuming, invasive, and require skilled medical staff and/or expensive detection 
systems. Cervical cancer is the fourth most common malignant disease among women, and the fourth leading cause 
of cancer death in women worldwide.

Aim: This pilot study sought to identify reliable biomarkers indicative of early stages of cervical dysplasia, by 
analysis of changes in volatile organic compound composition in urine samples.

Methods: Urine samples of 17 patients with cervical intraepithelial neoplasia (CIN I) and of 9 healthy female 
subjects were used. The sample composition was analyzed using Gas-Chromatography-Mass-Spectrometry. The 
statistical analysis of the data was performed using supervised artificial neural networks.

Results: We identified four molecules with potential to serve as biomarkers of cervical dysplasia together with 
two molecules whose absence in the urine can confirm existence of cervical dysplasia. All indications shows that 
these six potential biomarkers are produced in the body during various physiological processes enhances in sick 
women. Hence, these potential biomarkers are not related to environmental or dietary origins.

Conclusion: Validation of the statistical method used, indicated that the biomarkers identified are highly reliable 
for detection of cervical dysplasia. 
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healthy tissue. Cervical dysplasia is classified by three stages: Cervical 
Intraepithelial Neoplasia I,II and III (CIN I, CIN II and CIN III, [18], 
described in more details in the appendix. Women with a pre-cancerous 
condition will in most cases remain under physician follow-up, since 
progression to cervical carcinoma in situ (CIS) occurs in approximately 
in 11% of the CIN I cases and progression to invasive cancer occurs in 
approximately 1% of the cases [19]. Most cases of cervical carcinoma 
can be prevented through proper screening. In fact, during 2012 in 
developed countries, with better awareness for early detection and 
better diagnostic tools, cervical cancer was only the ninth leading cause 
of cancer death in women, while in undeveloped countries cervical 
cancer was the third leading cause of cancer related death [11]. In 
addition, errors in cervical sampling and in sample interpretation are 
common. Consequently, reports of Pap test sensitivity and specificity 
vary significantly, hence, current screening is far from being sufficiently 
accurate [20,21].

Herein, we describe results of a pilot study in which chemical 
analysis of volatile organic compounds (VOCs) in urine samples 
are compared between women with cervical dysplasia in stage CIN I 
and urine samples of healthy women. The small sample size used in 
this pilot study is related to the limited budget provided for this pilot 
research. The main goal of the study is to try and identify statistically 
meaningful potential biomarkers that will allow rapid, non-invasive, 
reliable and unexpansive test for cervical dysplasia in the CIN I stage. 

Methods
Composition analysis of VOCs in the headspace over urine samples 

was performed using gas chromatography (GC) combined with mass 
spectrometry (MS). The volatile organic compounds composition in 
the headspace of urine samples of 17 patients with CIN I and 9 samples 
of healthy female subjects were analyzed. 

Subjects

Cervical dysplasia/cancer patients were admitted to the Department 
of Obstetrics and Gynecology at San Camillo-Forlanini Hospital 
(Rome, Italy). Colposcopy exams were carried out in all patients before 
surgery. After LEEP (Loop Electrosurgical Excision Procedure) and 
pathological analysis, the histological type and grade of the cervical 
tumors were determined. Only CIN I grade patients were selected 
for the study and their urine samples were collected. All procedures 
involving human participants were in accordance with the ethical 
standards of the institutional and/or national research committee 
and with the 1964 Helsinki declaration and its later amendments 
or comparable ethical standards. All patients included in the study 
signed an informed medical consent form, previously approved by 
the Institutional Ethical Committee and the Medical Board of the San 
Camillo-Forlanini Hospital. Urine samples were obtained from 17 
female CIN I patients (mean age 36.8 years, SD ± 9.9) and 9 healthy 
female subjects (mean age 39.6 years, SD ± 14.2). See details of the 
subjects in the Appendix Table A2. All healthy women participants did 
not present any symptoms of any kind of cancer, acute inflammation, 
flu, pregnancy, or infectious diseases before and during the period of 
the experiments. Participants were asked to supply 50 ml of urine in 
sterile screw-top plastic vials. Urine samples were divided into two 25 
ml septum topped vials and frozen at -18°C until use. 

Sample analysis

GC-MS analysis was performed using an Agilent 6890 series 
GC system (Agilent, USA) connected to Agilent 5973 network mass 
Selective detector (Agilent). The samples were concentrated prior 

to all measurements and introduced into the GC system using static 
headspace sample extraction, achieved by exposure of a 65 μm 
polydimethylsiloxane/divinylbenzene (PDMS/DVB) solid-phase 
microextraction (SPME) fiber (SUPELCO, Bellefonte, PA) to the 
headspace over the solvent-free urine sample for 20 min at 80°C. A 
detailed description of the chromatographic analysis procedures used 
is given in the appendix section. 

Chromatogram pre-processing

The noise level in each chromatogram was evaluated using a home 
written MATLAB code, according to clinical and laboratory standards 
institute (CLSI) guideline EP17. The code was used to set the threshold 
between noise and actual peak according to the Limit of Detection 
(LOD) definition which is given in the appendix section. The retention 
times of peaks in the chromatogram were assigned by identification 
of local maxima that are above the threshold value. The measured 
chromatograms were represented by a pair of vectors containing peak 
retention time and their area. The fluctuations in peak positions were 
measured by analysis of our GC calibration mixture described in the 
Appendix section. The chromatograms of 40 measurements performed 
on different days were analyzed to yield a maximum uncertainty at 
peak position of 1.2 sec. Thus, the entire measurement period was 
sub-divided into time intervals of 2.4 sec which ensured that identical 
peaks in two different chromatograms will be located in the same time 
interval. The area of each peak in the chromatogram was normalized 
twice consecutively; first by the creatinine level found in the urine 
sample and then by the largest peak area in the spectrum. Hence, all 
area values in all spectra were in the range of 0-1. 

Statistical analysis

The statistical analysis used is a non-linear approach, based on 
Artificial Neural Networks (ANN). The ANN contained two layers 
of “neurons” appropriately connected by weights. Data inputs were 
connected to the neurons in the first layer (“hidden” neurons), which 
were connected in turn to the second layer of the “output” neurons. 
Adjusting the values of the weights between the neurons during the 
training of the ANN was carried out using “back-propagation” of the 
errors between the output neurons and the known data outputs. A 
constant bias threshold is included as additional input to all hidden 
and output neurons. 

Once the ANN is trained, it is verified by presenting examples 
not used in the training. ANN modeling has been used in analyzing 
bio-medical data [22,23], and high dimensional data was successfully 
modeled and analyzed by the GB ANN algorithm set [24]. 

The chromatogram obtained for each sample was assigned as 
belonging to one of two classes: ‘Healthy’ or ‘Sick’. The contribution 
vector for the separation between the two classes was calculated. The 
compounds with the largest values in this vector were assigned as 
possible biomarkers of cervical dysplasia [25-27]. Once a trained ANN 
is available, it can be analyzed to extract the identification of the more 
relevant features [28]. The causal index (CI) based algorithm [29] was 
found to be very useful in revealing the influence of input change on 
the change in relative magnitude and sign of each output. A detailed 
description of this approach is given in the appendix section.

Validation

Two cross-validation methods were used to examine the 
generalization of the statistical model obtained by the approach 
described above. Both validation methods used are suitable for 
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application to cases with small numbers of samples such as those 
described in this study [30]. The two validation methods used were: 
Leave one out (LOO) and 7-fold [31,32]. In the 7-fold cross validation 
the original sample set is randomly partitioned into seven equal size 
subsamples. One of the subsamples is chosen for validation while the 
other subsample sets are used as training data. The process is repeated 
7 times. The LOO validation approach subdivides the samples space 
into one sample used for validation and all remaining samples used 
for training. The process is repeated until all samples have been tested 
for validation. The classification of each prediction sample for LOO or 
prediction set for 7-fold was determined by the classification output of 
each model, as explained in the appendix section.

Results and Discussion
GC-MS results

A comparison between typical GC-MS chromatograms of urine 
samples obtained from healthy and sick women samples is presented 
in Figure 1. Four compounds that were present in all urine samples 
examined were identified. These four compounds served as internal 
references in the data analysis stage. The internal reference compounds 
peaks are marked by arrows in Figure 1 as lref. 1 (ammonia), Iref. 2 
(hexamethyl-cyclotrisiloxane), Iref. 3 (octamethyl-cyclotetrasiloxane) 
and Iref. 4 (1,3-dihydro-5-methyl-2H-Benzimidazol-2-one). The 
origin of these internal reference peaks is related to both the urine 
sample composition and the experimental system (column and SPME 
fiber coatings). 

Inspection of the chromatograms in Figure 1 shows clear 
differences between the data of sick and healthy women. There are 
many peaks that appear in both healthy and sick urine samples but it is 
clear that each chromatogram exhibits a large number of unique peaks 
that do not exist in the other chromatogram. This is not surprising, 
since urine samples of different individuals are expected to exhibit 
variations due to differences in diet, habits and physiology. Thus, the 
central goal of the present study is to check whether one can find a 
group of statistically meaningful peaks that can uniquely identify the 
urine sample as belonging to a sick woman. 

Data pre-processing

The output obtained by the GC-MS software (enhanced msd 
ChemStation Vers. E.02.01.1177) is in the form of two column vectors 
containing the retention time assigned to each peak detected and the 
area under the peak respectively. All area values in the chromatogram 
were first normalized according to the concentration of creatinine in 

the sample. Next, since ammonia (Iref. 1) exhibited the largest peak 
area in all chromatograms, its value was used to normalize the area 
of all other peaks in the chromatogram. The peak retention time 
vector was mapped onto a vector that contained 625 elements, each 
of duration of 2.4 sec. This time box size was defined by the statistical 
error in retention time of peaks corresponding to different known 
compounds used for the calibration. Thus, each time box could contain 
only a single peak with retention time equal to the value at the box 
center. This procedure ensured that identical peaks were assigned 
identical retention times. The normalized peak area was assigned to the 
box, and if no peak existed in a given time interval, its value was defined 
to be zero. 

Statistical analysis and its verification

A supervised ANN was used for the modeling the GC-MS data 
where all the input features were connected to 5 neurons in the hidden 
layer and those were connected to a single neuron in the output layer. 
The back propagation method was used to perform the training of the 
ANN using 70% (18 out of 26) randomly chosen chromatograms. The 
convergence of the training set to a model that correctly reproduced all 
the training samples is shown in the Appendix, Figure A1. The output 
level contained a single neuron whose value was in the range 0.1-0.9 
for all samples. Output values in the range 0.1-0.4 were classified as 
belonging to sick women; those between 0.6-0.9 as belonging to healthy 
women, and outputs in the range 0.4-0.6 were defined as undecided. 
The quality and generalizability of the outcome model was tested on the 
remaining 30% of the chromatograms in the population that were not 
used in the training process. The outcome of this generalization was 
very good as can be seen in Appendix Table A1.

Validation analysis of the ANN based model obtained was carried 
out using two different procedures, both suitable for small statistical 
ensembles [33]: the 7-fold variation and the leave one out (LOO) 
validations. The validation results, using both validation methods, of 
the ANN based model are presented in Table 1. Inspection of the results 
clearly suggests that the ANN based model of the GC-MS results are 
highly accurate. This accuracy is related to the non-linear correlations 
between the dependent and independent variables.

Potential biomarkers for CIN I stage of cervical dysplasia

The ANN based model allowed us to identify VOCs in urine 
samples that may serve as biomarkers for CIN I stage cervical dysplasia. 
As discussed above, the validation of the model showed that the ANN 
yields very good results. In the following we shall focus on discussion of 
the potential biomarkers suggested by the ANN analysis. 

Figure 1: GC-MS chromatograms results of urine samples from a typical 
sick woman (bottom-solid line) and a healthy woman (top-round dots).

Data 
source

Validation 
type

Group 
type

Model classification
T/S/H/U*

Sensitivity/
PPV**

Specificity/
NPV***

GC-MS

7-fold
Sick 17/17/0/0

1.00/1.00 0.89/1.00Healthy 9/0/8/1
Total 26/17/8/1

LOO

Sick 17/14/3/0

0.82/0.82 0.89/1.00
Healthy 9/0/8/1

Total 26/14/11/1
Healthy 9/2/6/1

Total 26/14/8/4

Table 1: Summary of the validation analysis of the ANN models using two different 
validation methods. T: total members in the group; S: members in sick group; 
H: members of healthy group; U: Undecided by model; PPV: Positive Predictive 
Value; NPV: Negative Predictive Value.
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The chemical identities of the potential biomarkers obtained 
by the ANN analysis are listed in Table 2. The peak identification 
shown in Table 2 was assigned based on the search results of the GC-
MS software, ChemStation, using the NIST’08 libraries. Chemical 
identification was assigned only if the Quality Factor (QF) obtained 

by the search code was above 80. In some cases few assignments with 
QF>80 were obtained, so in these cases all the possibilities are given. 
For each possible biomarker the QF is given together with molecular 
structure and percent of repetition in the healthy and sick groups. For 
each chemically identified potential biomarker we also added possible 

RT (min) Biomarker Possible origin QF % Sick 
(n=17)

% Healthy 
(n=9) Molecule Structure Known as biomarker for

3.72 3-Hexanone
Dietary [36], Lipid 
Peroxidation [37] 80 41% 0% -

3.92 Hexanal Systemic, dietary [36], 
Lipid Peroxidation [38] 87 47% 0%  Lung cancer [39], Liver Cancer [40]

6.88 3-Ethylcyclopentanone Pheromone [41] 83 35.5% 0% Age and may be related to oxidative 
stress [42]

7.84 Ethanol, 2-(2-ethoxyethoxy) Environmental 83 94% 44.5% -

8.08 1-Propene, 1-(ethylthio)-2-
methyl-

Environmental – smoking 
[43] 87 35.5% 11% -

8.28 Benzeneacetaldehyde Environmental 90 70.5% 55.5% Antioxidant [44]

8.96 Unknown - - 76.5% 78% - -

9.28 Urea
endogenous metabolites 

80 94% 89%                                  -

9.68 Urea 86 88% 55.5%                                  -

10.52 Dodecane, 4-methyl- Probably oxidative stress 
[45] 89 76.5% 78%

 
breast cancer [46], Tuberculosis [47] 
Melanoma [48] and Lung cancer [49]

10.68 3,4-Dimethylbenzaldehyde Environmental –smoking 
and pollution [50-52] 93 88% 33.5%

11.32 Naphthalene, 2-methyl-
Environmental –smoking 

[53]

93 47% 44.5%
 Carcinogen [54]Or

Naphthalene, 1-methyl- 93

11.84 2-Methoxy-4-vinylphenol Dietary – smoked food 
[55] 95 82.5% 66.5%

 

Antioxidant [56]

12.12 Piperitenone Dietary – mint species 
[57] 93 47% 11%  Antioxidant [58]

12.28 Toluene-2,4-diisocyanate Environmental 94 64.5% 33.5% Carcinogen [59]

12.92 5-Methyl-1,3-dihydro-2H-
benzimidazol-2-one Drug 91 94% 100%

12.96 Unknown - - 94% 100% - -

16.96 2-Pentadecanone, 
6,10,14-trimethyl-

Dietary
Environmental – Smoking 

[60]
87 59% 22% Antioxidant 

17.56 Lidocaine Drug 91 70.5% 0%

19.92 Unknown - - 17.5% 0% - -
20.12 Bisphenol A Dietary and Environmental 93 35.5% 22% Endocrine disruptor [61]
24.00 Unknown - - 35.5% 22% - -

Table 2: Summary of the chemical identity of potential biomarkers obtained using the ANN approach. The chemical identity of a peak is assigned only if the Quality Factor 
(QF) was greater than 80, otherwise the peak is assigned as unknown. For some peaks in the chromatogram a few possible assignments were possible, in such case all 
possibilities with QF>80 are shown. There are compounds which occur in both sick and healthy women samples; however their concentration in urine of sick women is 2-3 
folds higher.
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routes of its generation or entrance to the body and its identification 
as biomarker in different types of illnesses according to the literature. 
Inspection of the data in Table 2 shows that the main sources for most 
of the potential biomarkers are: dietary, peroxidation processes and 
environmental sources. Bold fonts were used to mark all the names of 
potential biomarkers that are produced in the body (Table 2). There 
are four potential biomarkers that are not identified as originating 
from environmental or dietary sources. The four potential biomarkers 
that were identified are: 3-Hexanone, Hexanal, Dodecane, 4-methyl- 
and 3-Ethylcyclopentanone. The physiological production of these 
potential biomarkers is associated with processes related to oxidative 

stress. Three of these compounds were not identified in the urine 
sample of any member of the healthy women group while the fourth 
appeared in both groups but their concentration in the urine of sick 
women was over two fold higher than in samples from healthy women. 
This group of four compounds have high probability to serve as reliable 
biomarkers for CIN I stage cervical dysplasia.

A similar set of compounds that characterizes the healthy 
women group was also identified. The VOCs identified, using the 
ANN based approach, are presented in Table 3. Two compounds: 
2,7-Dimethyloxepin and 1-Butene, 4-isothiocyanato- were detected as 

RT 
(min.) Name Molecule Structure Possible Origin QF % in Sick 

(N=17)
%in Healthy 

(N=9)

6.36 2,7-Dimethyloxepin Metabolite of o-Xylene [62] De-aromatization 
of o-Xylene by P450BM3 (CYP102A1). 96 0 78

7.2 1-Butene, 4-isothiocyanato- - 87 0 33

7.44 Unknown - 100 89

7.88 p-Cymene Food origin [63] 95 18 67

8 D-Limonene
Scent ingredient in perfumes, food and 

detergents.
Cancer protection [64]

96 71 89

8.64 Unknown 17 56

9 β-Linalool flavor and fragrance compound 96 47 33

10.32 Creosol Environment (smoking) [65] 96 59 89

10.64 3-Octanol, 3,7-dimethyl-, acetate - 80 12 22

11 (-)-Carvone Mint scent 97 82 78

D-(+)-Carvone Kummel scent 96

Carvone - 93

13.28 Unknown - 88 100

13.36 Butylated Hydroxytoluene flavor and fragrance compound 91 59 56

13.44 2,5-Cyclohexadiene-1,4-dione, 
2,6-bis(1,1-dimethylethyl)- - 90 29 89

15.32 Cyclopentaneacetic acid, 3-oxo-2-
pentyl-, methyl ester Jasmine scent ingredient 91 82 89

22.16 Tetracosane - 97 18 11

Octadecane - 95

Table 3: List of potential biomarkers that contributed to sample identification of the healthy women according to ANN analysis.



Citation: Elia P, Raizelman S, Katorza E, Matana Y, Zeiri O, et al.(2015) Biomarkers for the Detection of Pre-Cancerous Stage of Cervical Dysplasia. J 
Mol Biomark Diagn 6: 255. doi:10.4172/2155-9929.1000255

Page 6 of 8

Volume 6 • Issue 6 • 1000255
J Mol Biomark Diagn
ISSN:2155-9929 JMBD an open access journal 

Biomarkers Discovery & Validation

indicative of healthy women but were not identified in any sample of 
sick women. All other chemicals listed in the two tables appeared in 
samples of both sick and healthy women with similar probability. This 
may suggest that the absence of these two compounds in the urine can 
also serve as potential biomarkers for CIN I stage of cervical cancer if 
both are absent while the four potential biomarkers described above 
appear in the urine. 

Conclusions
Potential biomarkers in the urine of stage CIN I of cervical 

dysplasia were identified. Urine sample analysis was carried out 
using GC-MS. The data obtained were analyzed using an ANN based 
statistical approach. The resultant models yield very good separation of 
the data into two groups: healthy and sick women. The accuracy of the 
model was examined by two validation methods, both appropriate for 
examining small statistical groups of data. The validation clearly shows 
that the ANN-based model is a highly reliable one. 

Implementation of the ANN method to the GC-MS data was 
carefully analyzed. Most of the potential biomarkers in urine samples 
of sick women that were identified by the ANN method are of 
environmental or dietary origins. However, the ANN analysis identified 
four potential biomarkers that are produced by the body. These 
compounds constitute a sub-set of urine related VOCs, all produced 
in the body in oxidative stress related processes, have high probability 
to serve as biomarkers for the CIN I stage of cervical dysplasia. These 
compounds are (see Table 2 for references): 

1. 3-Hexanone: a product of the lipid peroxidation processes in 
the body. It has been detected, but not quantified, as a breast 
cancer biomarker in urine.

2. Hexanal: an alkyl aldehyde found in human biofluids 
including milk samples. It is a mediator of oxidative stress. 
Hexanal is a volatile compound that has been associated with 
the development of undesirable flavors. The content of hexanal, 
which is a major breakdown product of linoleic acid (LA, n - 6 
PUFA) oxidation, has been used to follow the course of lipid 
oxidation. It is a product of the lipid peroxidation process in the 
body and can be found normally in urine and in cerebrospinal 
fluid. Abnormal concentrations can be found in urine, blood 
and exhale breath in lung, liver and breast cancers. 

3. Dodecane, 4-methyl: This compound has been reported as a 
biomarker of tuberculosis in a number of publications. 

4. 3-Ethylcyclopentanone: This compound has been reported as 
a VOC found in the urine whose concentration increases in 
case of oxidative stress.

In addition, two chemicals that were identified as indicative of 
urine samples of healthy women but were absent in all samples of the 
sick women. These compounds are: 2,7-Dimethyloxepin and 1-Butene, 
4-isothiocyanato- and they their absence in a urine sample of sick 
women may be considered as a potential biomarker for CIN I cervical 
dysplasia provided that the four potential biomarkers listed above were 
identified in the urine. Most of the potential biomarkers identified here 
for CIN I stage cervical dysplasia have been observed, separately, in 
previous investigations of different cancers. However, when identified 
as a group this set of VOCs, together with the two VOCs found only 
in urine of healthy women but not in samples of sick women, are 
suggested to be highly suitable to serve as potential biomarkers in the 
identification of CIN I cervical dysplasia. This set of biomarkers can be 
used as a simple non-invasive and unexpansive screening procedure to 

identify CIN I stage of cervical dysplasia. This constitute an important 
simple, non-invasive and unexpansive method that compliments the 
existing cervical dysplasia identification procedure used at present. A 
last point to be noted is that none of the potential biomarkers identified 
in the present study were observed in urine samples of smokers or 
in the urine of individuals whom used to smoke in the past [34,35].  
The main drawback of the present study if the small number of urine 
samples examined for both sick and healthy women. This limitation, 
as stated in the introduction section, is mainly due to the lack of 
appropriate financial support for the present investigation. However, 
the very good results obtained in the validation of the described results 
suggest that they do have a high potential to become extremely useful. 
The reliability of these biomarkers has to be further proven in more 
extensive studies (with larger number of urine samples from sick and 
healthy women) that are planned to be performed in the future. 
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