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Introduction
Impaired wound healing is the leading cause of amputation in 

people with diabetes mellitus [1]. It produces a high risk of recurrent 
hospitalization and has a long-term negative effect on quality of life, 
morbidity and mortality as well as on social economy [2,3]. Despite a 
relatively high standard in the treatment of chronic wounds, there still 
exists a high amputation rate. In diabetic wounds, due to infection and 
inflammation which lead to imbalance of protease and reactive oxygen 
species, essential growth factors are degraded, the ability of angiogenesis 
is impaired and cell recruitment to the wound sites is inhibited [4]. 
To facilitate wound healing and tissue regeneration in this situation, 
biomaterial-based scaffolds are currently widely used to provide 
extracellular matrix for cell proliferation and migration. In the recent 
years additional optimization of the cellular response by delivery of 
angiogenic factors for vascularization to the affected tissue was a focus 
of research in this area. This article reviews the literature on biomaterials 
used for diabetic wound healing and draws some future perspectives for 
further development.

Type of Biomaterials Applied for Diabetic Wound 
Healing

According to the components of biomaterials, they can be 
categorized into three types: tissue-derived biomaterials, hydrogel-
based biomaterials and biomaterials with controlled-release of signaling 
molecules (Figure 1 and Table 1).

Tissue-derived scaffolds

Scaffolds derived from tissues mimic the natural extracellular 
matrix substrates and provide three-dimensional natural structures as 
extracellular microenvironment for the cells. These valuable properties 
are frequently exploited for tissue engineering applications as well as for 
improvement of diabetic wound healing [5-7]. 

Those scaffolds can be processed from either cadaveric allografts 

of skin tissue, placenta tissue, porcine small intestinal submucosa (SIS) 
or from microalgae [8]. Cadaveric allograft is made from cadaveric 
human skin, in which the epidermis and cells are removed to avoid 
immunologic rejection [8]. Dehydrated Human Amnion/Chorion 
Membrane (DHACM) is composed of human amnion/chorion 
membrane, with a single layer of epithelial cells, a layer of basement 
membrane and an avascular connective tissue matrix to promote wound 
healing [9,10]. It has been reported to achieve wound closure faster 
than standard wound care. Cryopreserved micronized amnion (CPM) 
is a human wound matrix. It is able to provide fetal cells like MSCs, 
neonatal fibroblasts and epithelial cells as well as growth and angiogenic 
factors to the wound [11], however their respective contribution to 
the wound healing is still a matter of debate. Zheng et al. [12] applied 
cryopreserved living micronized amnion onto the wounds of db/
db mice. They reported that the wound healing process was greatly 
promoted. They attribute this effect to secretion of growth factors, 
inflammation-related, and chemotaxis-related factors, which regulated 
migration of macrophages, recruitment of CD34+ progenitor cells, and 
neovascularization [12]. Porcine SIS is an acellular matrix derived from 
small intestinal submucosa of porcine, which showed positive effects on 
promoting diabetic wound healing [13]. Those tissue-derived scaffolds 
provide nearly perfect extracellular matrix architectures for three-
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Abstract
Impaired wound healing is the leading cause of non-traumatic lower limb amputation in people with diabetes 

mellitus. Skin substitutes engineered from biomaterials currently play an important role in the healing process 
of diabetic wounds, especially those wounds that fail to show progress after standard wound care. This article 
summarizes current developments of biomaterials used for promoting the wound healing process in either diabetic 
animal models or patients with diabetes mellitus. Those biomaterials can be categories into tissue-derived scaffolds, 
hydrogel-based biomaterials and biomaterials with controlled-release of signaling molecules. Tissue-derived 
scaffolds maintain perfect extracellular matrix architectures for three-dimensional cell growth and rebuilding of 
multi-layer tissue structures within scaffolds after implantation. Hydrogel-based biomaterials are engineered to 
resemble the natural extracellular matrix for cell invasion and capillary growth. Biomaterials processed with cells or 
controlled-release of signaling molecules (growth factors, cytokines) can induce angiogenesis, re-epithelialization, 
cell recruitment and migration as well as inhibit consistent inflammation, thereby accelerating the wound healing 
process. Better understanding of the mechanism of diabetic wound healing will lead to the development of even better 
biomaterials possibly with inclusion of engineered patient derived cells or factors which will aid in vivo vascularization 
and consistent release of tissue-inductive signals. By reviewing the recent literature, we draw future perspectives on 
new strategies for further improvement of the individualized therapy of diabetic wounds.
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dimensional cell growth and rebuilding of multi-layer tissue structures 
within scaffolds after implantation, promoting tissue regeneration in 
diabetic wound healing processes.

Hydrogel-based biomaterials

Engineered hydrogels have the advantage over tissue derived 
matrices, that their properties can be changed more or less at will and 
that the ingredients are better defined. Usually they are engineered 
to resemble the extracellular matrix of natural soft tissues [14]. These 
biomaterials can be prepared as high-water-content hydrogels, sponge 
and patch structures or other architectures, processed by crosslinking, 
dehydration or freeze drying and electrospinning technique, 
respectively [15-17]. 

Poly-N-acetyl Glucosamine (pGlcNAc) is a matrix derived from 
microalgae, which is FDA approved for treating diabetic foot ulcers [18].

Fibrin is a common hydrogel used to fabricate scaffolds in the 
treatment of diabetic wounds [19]. It is able to enhance angiogenesis 
and modulate inflammation in the wound, which will accellerate the 
healing process. Integra is a collagen-glycosaminoglycan scaffold, which 
has been already applied in clinic for fibroblast and endothelial invasion 

and capillary growth [20]. It could also support epithelialization in 
the absence of vascularization. Lee et al. developed a nano-fibrous 
collagen/poly-D-L-lactide–glycolide (PLGA) scaffold membrane 
by electrospinning technique. This scaffold could be applied onto 
diabetic wounds and loaded with drugs, providing sustained release of 
glucophage and promoting wound closure [21]. 

In addition to biocompatible hydrogel scaffolds, cells play an 
important role in the process of wound healing by producing essential 
growth factors and inducing neovascularization. Therefore, cellularized 
scaffolds based on above biomaterials were developed for diabetic 
wound healing [22,23]. Navone et al. demonstrated electrospun nano-
fibrous Silk fibroin patches cellularized with human adipose-derived 
mesenchymal stem cells (ADMSCs) as an effective treatment for 
wound healing, which improved skin regeneration in diabetic mice 
[24]. ADMSCs were reported to confer benefits as tissue restorative 
agents in vivo. This is ascribed to their own multi-linear differentiation 
properties as well as their ability to produce trophic factors for tissue 
regeneration [25,26]. O’Loughlin et al. seeded autologous early 
endothelial progenitor cells onto collagen scaffolds. They observed that 
cells exposed to osteopontin accelerated the speed of wound closure 
along with increased angiogenesis [27]. It was noted that the wound 

Figure 1: Schematic illustration of the categories of biomaterials used on diabetic wounds.

Categories Source Biomaterials reported in literature

Tissue-derived biomaterials
Skin tissue from cadaver CAM(cadaveric acellular matrix) [8]

Placenta DHACM [9,10] CPM [11,12]
Small intestine Porcine small intestinal submucosa [13]

Hydrogel-based biomaterials
High-water content hydrogels 

Fibrin [19]
Collagen-GAG [20]

Gelatin microcryogels [23] GAG [28]
BLCC [29]

Freeze-drying sponges pGIcNAc [18] Collagen sponge [27]
Electrospun patches Collagen/PLGA [21] Silk fibroin [24]

Biomaterials with controlled-
release of signaling molecules

Nanoparticles loaded with GF/chemokines VEGF, bFGF nanoparticles in PEtU-PDMS/ fibrin [33] Curcumin loaded chitosan 
nanoparticles into collagen-alginate [36]

With vectors encoding functional molecules AdeNOS in fibrin scaffold [37] Hyaluronic acid-MMP hydrogels with VEGF plasmids [34]
GF/Chemokines preloadedd within Hydrogels Glucophage-loaded collagen/PLGA [21] Gelatin-PGA-based scaffold payload MCP-1 [35]

Table 1: Categories of biomaterials used on diabetic wounds.
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healing benefit was associated with a more efficient vascular network. 
Breitbart et al. seeded mouse dermal fibroblasts onto polyglycolic 
acid scaffold matrices, on which the cells were retrovirally transduced 
with the human platelet-derived growth factor B (PDGF-B) gene [28]. 
Results showed accelerated wound healing in the group with PDGF-B 
transduced cells. Bilayered Living Cellular Construct (BLCC) is a FDA-
approved product, which is engineered as bilayered collagen matrix 
with a dermal equivalent made of human neonatal foreskin fibroblasts 
and an epidermal equivalent made with human neonatal keratinocytes 
[29]. In randomized controlled trials, BLCC achieved closure in 56% 
of patients by 12 weeks compared with 38% of patients with standard 
wound care. Those hydrogel-based biomaterials provide a defined 
extracellular matrix for cell invasion, proliferation and vascularization, 
facilitating skin regeneration and angiogenesis in diabetic wounds. 

Biomaterials with controlled-release of signaling molecules

In addition to the extracellular matrix support and biological effect 
provided by the biomaterial scaffolds, tissue-inductive signals for 
the cells that rebuild the skin are also essential. Vascular endothelial 
growth factor (VEGF) and basic fibroblast growth factor (bFGF) have 
been shown to promote would healing by inducing angiogenesis and 
inhibiting prolonged inflammation [24]. However, these molecules are 
degraded quite fast by enzymes existing in the protease-rich wound 
environment [30]. Therefore, researchers have developed controlled-
release systems which are able to provide an efficient concentration of 
those functional molecules at the wound site during the healing process 
as well as protect the growth factors and cytokines from degradation 
and inactivation [31,32]. The release of the molecules was maintained 
by encapsulating nanoparticles, vectors (virus, plasmid, DNA, etc.) as 
well as preloading molecules within hydrogels during preparation [33-
35].

Losi et al. developed a poly (ether)urethane–polydimethylsiloxane/
fibrin-based scaffold containing nanoparticles loaded with VEGF and 
bFGF. This scaffold induced complete re-epithelialization of the wound 
of diabetic mice, along with enhanced granulation tissue formation and 
collagen deposition [33]. Karri et al. impregnated curcumin loaded 
chitosan nanoparticles into collagen-alginate scaffolds for treating 
diabetic wounds [36]. Breen et al. developed a fibrin scaffold for delivery 
of adenovirus encoding endothelial nitric oxide synthase (AdeNOS) to 
the wound of diabetic rabbits [37]. The combined material enhanced 
eNOS expression, inflammatory response and lead to a faster rate of 
re-epithelialisation, resulting in augmented production of nitric oxide 
and thereby acceleration of wound healing. Tokatlian et al. created 
porous hyaluronic acid-MMP hydrogels with VEGF plasmids for local 
gene therapy in a diabetic mouse wound [34]. Yin et al. engineered 
a gelatin-polyglycolicacid (PGA)-based scaffold with a payload of 
monocyte chemoattractant protein-1 (MCP-1) by electrospinning 
technique. In vivo experiments confirmed an increased recruitment 
of F4/80+macrophages into the wound bed by MCP-1, accelerating 
wound healing in a diabetic mouse model [35]. The biomaterials 
releasing tissue-inducing signals can promote angiogenesis, re-
epithelialization, cell recruitment and migration as well as inhibit 
consistent inflammation in the wound area, which accelerates wound 
healing processes.

Conclusion and Future Perspectives
Chronic wounds in patients with diabetes mellitus are a major drain 

on the social economy, and are projected to play an even bigger role 
in the future. They result in a high risk of amputation, morbidity and 
mortality. According to the mechanism of impaired diabetic wound 

formation, tissue repair process and regeneration, biomaterials based on 
tissue-derived scaffolds, hydrogels as well as controlled-release growth 
factors and cytokines have been applied on diabetic wounds in research 
and clinical settings. Results showed positive effects on accelerating 
wound healing processes, by promoting angiogenesis, cell migration, 
re-epithelialization and tissue regeneration. However, the speed of 
vascularization of scaffolds, which occurred in vivo after implantation, 
might be insufficient to supply embedded cells within the first critical 
week. The level of tissue-induced molecular signals released from 
biomaterials is mainly dependent on the initial concentration and drops 
after implantation [36,37]. New strategies for in vivo vascularization 
before implantation and devices or systems for consistent releasing of 
tissue-inductive signals should be considered for future investigation. 
Antibacterial ability of biomaterials could also be created with a 
consistent releasing system. Developing new biomaterials on the basis 
of a better understanding of the underlying mechanisms will further 
promote diabetic wound healing. Advances in autologous cell therapy 
like iPSC (Induced pluripotent stem cell) technology and use of blood 
derived cells for autologous factor production may overcome the need 
of non-autologous cells/factors in the future, leading to optimized 
individualized therapy for diabetic wounds [38,39].
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