Biosurfactant-Mediated Biocontrol of Macrophomina phaseolina Causing Charcoal Rot in Vigna mungo by a Plant Growth Promoting Enterococcus sp. BS13

Sumit Kumar, Dubey RC and Maheshwari DK
Department of Botany and Microbiology, Gurukula Kangri University, Haridwar – 249404, India

Abstract

A potential bacterial isolate Enterococcus sp. BS13 screened from rhizospheric soil of Vigna mungo was identified as Enterococcus sp. based on morphological, biochemical and genomic characterization. The biosurfactant producing activity of BS13 was based on many tests such as blood haemolysis test, CTAB agar, emulsification stability (E_s) test, oil spreading/displacement assay, drop collapse assay, bacterial adhesion to hydrocarbons (BATH) assay and surface tension (ST) measurement after 72 h of growth. GC-MS and FT-IR analyses established the similarity of biosurfactant with glycolipid type biosurfactant. Furthermore, Enterococcus sp. BS13 displayed plant growth-promoting ability, HCN production and antagonistic activity against Macrophomina phaseolina. Scanning electron microscopic study of fungal mycelia from zone of inhibition showed hyphaal degradation, halo cell formation and mycelial deformities in the pathogen. M. phaseolina sclerotia formation and development were arrested towards the zone of interaction; consequently, such mycelia and sclerotia lost the vigour. In pot trials Enterococcus sp. BS13 increased the growth of V. mungo with considerable diseases reduction. Hence, Enterococcus sp. BS13 bears ability of biosurfactant production, plant growth promotion and biocontrol of M. phaseolina. Therefore, the exogenous application of BS13 can be a potential strategy to accelerate plant growth promotion and biocontrol of M. phaseolina.

Keywords: Biosurfactant; V. mungo; Enterococcus sp. BS13; Macrophomina phaseolina; Biocontrol

Introduction

The naturally occurring plant growth promoting rhizobacteria (PGPR) aggressively colonize plant roots and benefit plants by providing growth nutrients and hormones [1]. They produce many plant growth-promoting metabolites, solubilize insoluble phosphates, and survive under various stresses environmental conditions. Plants cannot always meet their demand of minerals from natural soils [2]. The environmental enterococci are a taxonomically diverse group of bacteria but the plant-associated enterococci represent the lesser-known bacterial group. A little work has been done on enterococci of rhizospheric soil. The enterococci are temporary resident of agricultural plants and grasses [3]. Ulrich and Muller [4] studied the effect of Enterococcus faecalis and Enterococcus faecium on plants. The application of non-pathogenic soil bacteria as biofertilizers can be environmentally safe for increasing crop productivity and soil fertility owing to their ability to produce auxin, gibberellins and cytokinin [5]. The European Food Safety Authority recognized some of the strains E. faecium as feed additives [6]. The ability of E. faecium to produce phytohormones has been reported by Lee et al. [7].

A variety of soil microorganisms demonstrated the biocontrol of various soil-borne phytopathogens. But less work on biocontrol potential of enterococci has been done. Enterococci produce several compounds that inhibit the growth of many phytopathogens [8,9]. Biocontrol potential of Enterococcus faecium against phytopathogens was studied by Fhoul et al. [10].

Several enterococci have been screened during the isolation of biosurfactant producing and plant growth promoting rhizobacteria of V. mungo. V. mungo is a major Indian pulse crop grown throughout India. Annual production of urdbean in India is about 1.3 million tonnes. It has very high nutritious value possibly due to presence of protein (25 mg/100 g), potassium (983 mg/100 g), calcium (138 mg/100 g), iron (7.57 mg/100 g), niacin (1.447 mg/100 g), Thiamine (0.273 mg/100 g), and riboflavin (0.254 mg/100 g) [11]. M. phaseolina is most destructive phytopathogens. It infects more than 500 plant species [12]. It caused charcoal rot in V. mungo and reduces the crop yield. Therefore, the present work was designed to elucidate biosurfactant production, PGP activity and biocontrol of M. phaseolina by Enterococcus sp. BS13 as well as purified biosurfactant in vitro.

Material and Methods

Sample collection

The young plants of Vigna mungo were randomly collected from different locations of a farmer’s field in Saharanpur (India), put in to a sterile poly bag and brought to the laboratory for further work.

Isolation and selection of bacteria

Rhizospheric soil (1 g) was suspended in 10 ml of 0.85% (w/v) NaCl (saline) water, vortexed vigorously, serially diluted and plated on nutrient agar medium. The plates were incubated at 37°C for 24 h. Colonies appearing with dissimilar morphology on the surface of growth medium were purified and selected for further tests [13].

Screening for biosurfactant production

Blood haemolytic test: Log phase growing culture of isolated bacteria was streaked on blood agar plates and incubated at 37°C for 24 h. The test is based on the lysis of red blood cells by the substance. The test can be carried out by the addition of a sterile loop of colonies to a loopful of defibrinated horse blood. The suspension is then swirled and observed regularly for lysis over a period of 15 minutes. A positive test was indicated by clear zones of haemolysis around the colonies. The results of the blood haemolysis test are taken as a measure of the effectiveness of surfactants in reducing the surface tension of the blood. The percentage of haemolysis can be calculated by the formula:

\[\text{Percentage of Haemolysis} = \frac{\text{Diameter of Zone of Haemolysis} \times 100}{\text{Diameter of Colony}} \]

Received November 22, 2016; Accepted November 28, 2016; Published November 30, 2016

Copyright: © 2016 Kumar S, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Production and purification of biosurfactant: The isolate BS13 was transferred to nutrient rich (NR) broth containing 1% yeast extract, 1.5% nutrient broth and 1% ammonium sulfate. The culture was incubated at 37°C for 12 h and 120 rpm as seed culture to get optical density of 0.5 at 600 nm. Then, 5 ml suspension was transferred to a 1000 ml Erlenmeyer flask containing 500 ml of LB medium and incubated on a rotary shaker incubator (150 rpm) at 37°C. The bacterial cells were removed by centrifugation at 10,000 g at 4°C for 20 minutes and supernatant was acidified with 6N hydrochloric acid to get the pH 2.0, and incubated overnight at 4°C. The precipitated biosurfactant was collected by centrifugation at 15,000 g for 20 min and precipitate was dissolved in distilled water to get pH 7.0 by using 1N NaOH. Further, it was centrifuged at 10,000 g for 10 min following Sánchez et al. [21].

Chemical characterization of biosurfactant

Fourier transform infrared spectroscopy (FT-IR) spectra of the dried biosurfactant: FT-IR spectra of the dried biosurfactants were recorded on an 8400S, FT-IR spectrometer (Shimadzu, Japan) equipped with a mercury–cadmium–telluride (MCT) detector and cooled with liquid nitrogen. About 2 mg of dried biomass was milled with 200 mg of KBr to form a very fine powder. The powder was compressed into a thin pellet to be analyzed by FT-IR spectra at wave length of 400–4000 cm⁻¹. FT-IR spectra were analyzed by using OPUS 3.1 (Bruker Optics) software.

Gas chromatography-mass spectroscopy (GC-MS) analysis: GC-MS analysis of biosurfactant was performed by using a varian 4000 Mass Spectrometer employing DB5 type capillary column and helium as a carrier gas at a flow rate of 0.5 mL/min. The sample volume was 1μL; temperature was gradually increased from 40°C to 280°C to identify the compound. Total run time was 45 min. The MS transfer line was maintained at a temperature of 280°C. GC-MS analysis was done using electron impact ionization at 70 eV and data were evaluated using total ion count (TIC) for identification and quantification of compound. A comparative study carried out was between the identified compound spectra and that of known compounds of the GC-MS library NIST.

Biofilm formation in vitro: Biofilm formation was tested during bacterial growth in borosilicate glass tubes. Sterile Muller Hinton broth (MHB) (5 ml) was poured in the pre-sterile test tubes inoculated separately with BS13 culture along with proper control, and incubated at 37°C for 24 h. Broth was discarded and BS13 biomass attached to the glass surface was observed by staining with crystal violet to confirm biofilm formation [22].

Biodegradation of polycyclic aromatic hydrocarbon (PAH): Hydrocarbon-utilizing bacteria were screened for their ability to utilize PAH as sole source of carbon and energy using Bushnell-Haas fortified with 2% agar medium. In the present study mainly two PAHs such as kerosene and diesel were used for degradation.

Plant growth promotion (PGP) traits of isolate BS13

Phosphate solubilization: Phosphate solubilization ability of isolate was detected by spotting them separately on Pikovskaya’s agar plates [23]. A loopful of bacterial culture was spot inoculated on the plate and incubates at 28°C for 7 days. The presence of clear zone around the bacterial colonies indicates the phosphate solubilization.

Indole-3-acetic acid (IAA) production: IAA production by the isolate BS13 was determined following the methods of Gordon and Weber [24]. BS13 was grown at 37°C for 72 h in LB broth and centrifuged at 8,000 rpm for 30 min. The supernatant (2 ml) was mixed with two drops of ortho-phosphoric acid and 4 ml of the Salkowski reagent (50 ml of 35% of perchloric acid plus 1 ml of 0.5 M FeCl₃). Appearance of pink colour confirmed the production of IAA.
Siderophore production: Siderophore production by BS13 was tested using chrome azur S (CAS) agar plate method of Schwyn and Neilands [25]. Overnight culture (10 µ) was spot inoculated on CAS agar plate and incubated 28 ± 1°C for 48–72 h. Orange to yellow halo formation around the bacterial colonies confirmed siderophore production.

Chitinase production: Chitin plates were prepared using M9 agar medium amended with 1% (w/v) colloidal chitin. The plates were divided into equal sectors; spot inoculated with 10 µl of overnight grown BS13 culture and incubated at 37°C for 48–96 h. Zone of clearance around bacterial colonies indicated chitinase production.

HCN production: HCN production was determined following modified method of Bakker and Schippers [26]. For detection of HCN production, exponentially grown culture of BS13 was streaked on agar plates supplemented with or without 4.4 g glycine l-1 with simultaneous addition of filter paper soaked in 0.5% picric acid in 1% Na2CO3 in the upper lids of plates along with uninoculated control. The plates were incubated at 28 ± 1°C for 72 h along with a control. The changes in colour from yellow to light brown or moderate brown to strong brown was examined for putative HCN production.

16S rRNA gene sequencing of isolate BS13: Pure culture of BS13 was grown in LB broth until log phase achieved. The genomic DNA was extracted according to Bazzicalupo and Fanì [27]. PCR amplification of genomic DNA was carried out following Kumar et al. [28]. The amplification of 16S rRNA gene was done by using universal bacterial primer 1492R primer (5′CGGTACCTTGGTACGACTT 3′) and 27F (5′AGATTTTGATCMTGGCTCAG 3′) under the conditions described by Brown and Balkwill [29]. The PCR product was sequenced by Aakar Biotech Pvt. Ltd., Biotech Park, Lucknow (U.P.) India. Sequence search in the EMBL/GenBank/DDBJ/PDB data libraries was performed using the BLAST (blastn) [30] search algorithm in order to establish the identity of the strain. Sequences of the closest matched reference strains were retrieved and aligned using ClustalW (multiple and pairwise) with the newly determined sequence. Phylogenetic analysis was performed using MEGA version 6 and phylogenetick tree was constructed by neighbour-joining method with 1500 replicates to produce bootstrap value and to validate the reproducibility of the branching pattern of the tree. 16S rRNA gene sequence was submitted to the NCBI GenBank and to get the accession number.

Antagonistic activity against phytopathogenic fungi: Antagonistic activity of the isolate BS13 against M. phaseolina was determined by dual culture technique of Skidmore and Dikinson [31]. A fungal disc of 1 cm diameter was placed in the centre of potato dextrose agar plate. Then overnight grown bacterial culture was spot inoculated on the surface of agar plate 2 cm away from the central fungal disc. The plates were incubated at 28°C for 72 h. Growth inhibition was calculated by the formula: 100 × (C–T)/C (T, treatment; C, control). Petri plates were kept in the earthen pots (25 × 25 × 25 cm). Healthy seed of V. mungo was sown in sterile sandy loam soil (sand 56%, silt 22%, clay 27%, WHC 41.10%, pH 8.29) put in the pre-steriled soil (1 kg) in pots.

Development of antibiotic-resistant marker in strain BS13: Antibiotic resistant marker strain of BS13 was developed followed by Bhatia et al. [32]. Antibiotic discs (5 mm diam) of different concentrations were placed at four corners over the surface of Enterococcus sp. BS13 seeded plate and incubated at 28 ± 1°C for 24 h to measure the inhibition zone. Resistance marker strains were developed by subjecting the culture successively to low concentration to high concentration of methicillin and fusidic acid.

Preparation of fungal inoculum: Inoculum of M. phaseolina was prepared by multiplying the pathogen on potato dextrose broth medium. Fungal culture was filtered after 7 days incubation at 28°C. Filtered mycelial mat and sclerotia were dried at 85°C to evaporate moisture content and crushed to make powder. Fungal powder (500 mg/kg) was mixed in the pre-steriled soil (1 kg) in pots.

Pot trial

Development of antibiotic-resistant marker in strain BS13: Antibiotic resistant marker strain of BS13 was developed followed by Bhatia et al. [32]. For development of an antibiotic strain marker, Enterococcus sp. BS13 was subjected to antibiotic sensitivity test. Antibiotic discs (5 mm diam) of different concentrations were placed at four corners over the surface of Enterococcus sp. BS13 seeded plate and incubated at 28 ± 1°C for 24 h to measure the inhibition zone. Resistance marker strains were developed by subjecting the culture successively to low concentration to high concentration of methicillin and fusidic acid.

Preparation of fungal inoculum: Inoculum of M. phaseolina was prepared by multiplying the pathogen on potato dextrose broth medium. Fungal culture was filtered after 7 days incubation at 28°C. Filtered mycelial mat and sclerotia were dried at 85°C to evaporate moisture content and crushed to make powder. Fungal powder (500 mg/kg) was mixed in the pre-steriled soil (1 kg) in pots.

Mass production of bacteria and seed bacterization: Antibiotic resistant marker Enterococcus sp. BS13 was used for mass production. Starter culture of Enterococcus sp. BS13 was prepared by inoculating 50 ml LB broth in flask and incubated at 30°C for 24 h at 150 rpm [33]. Then the culture was transferred separately in 1 L flask containing sterilized broth and incubated at 30°C at 150 rpm. The pH of the medium was maintained at 6.8. Culture broth was periodically checked to detect the colony forming unit for detection of any contamination. When cell concentration increased to 1 × 10^6 cells/ml in pure form, it was used for seed bacterisation and pot trials.

Healthy and viable seeds of V. mungo were washed in sterile water and surface-sterilized with 95% alcohol for 30 sec followed by 0.1% (w/v) HgCl2 for 1 min. Seeds were washed 5-6 times with sterile distilled water. The bacterial culture introduced as above was centrifuged at 8000 g for 15 min at 4°C. The pellets obtained were suspended in sterile distilled water to obtain a population density of 1 × 10^9 cfu/ml.

Seed bacterization was carried out following the method of Weller and Cool [34]. The cell suspension was mixed with 1% carboxymethyl cellulose (CMC). Slurry was coated separately on the surface of healthy seeds. The seeds coated with 1% CMC slurry without bacteria served as control [32]. The fungal culture in the form of powder was mixed in sterile sandy loam soil (sand 56%, silt 22%, clay 27%, WHC 41.10%, pH 8.29) put in the earthen pots (25 × 25 × 25 cm). Healthy seed of V. mungo inoculated with the Enterococcus sp. BS13 strain alone and in combination with M. phaseolina separately were examined for their ability to enhance the overall growth of plants. In the pot trial, bacterial inoculated and non-inoculated seed were sown in triplicate along with control. Seed germination was recorded after 15 days of the sowing. Vegetative growth parameters were recorded after 30 days and bacterial root colonization was recorded at an interval of 30 days up to 90 day after sowing (DAS).

Statistical analysis

All data of pot trial statically were analyzed by GraphPad Prism 5. Differences among treatments were assessed using one-way analysis of variance (ANOVA).

Results

The isolate BS13 was found most potent biosurfactant producing and PGP activity bearing isolate. On the basis of morphological,
physiological and biochemical characteristics the isolate BS13 was found Gram-positive, coccus, nonspore former, catalase negative, oxidase positive, and producers of white, dry and irregular edged colonies on NAM plates (Table 1). The isolate BS13 was identified as Enterococcus sp. based on microscopic and biochemical analysis according to Bergey’s manual of determinative bacteriology [35]. Different phenotypic characters of isolate was compared with the standard strains of Enterococcus faecium (ATCC 700221), Enterococcus faecium (ATCC 51559) and Enterococcus faecium (ATCC 27270).

Screening of biosurfactant

BS13 was further tested for biosurfactant production employing haemolytic test, oil displacement assay, CTAB agar plate method, drop collapsing, emulsification index, and Surface tension measurement. The isolate BS13 showed β-haemolytic activity and caused the maximum zone of ~1.66 cm. It also showed a zone of displacement in the oil. The flat drop appearance in microtiter plate confirmed the positive result of drop collapse test, proving the use of drop collapse method as a quick and simple method for detection biosurfactant production. A prominent emulsification activity with the emulsification index (E24) of 70.58 was also exhibited by BS13. Production of dark blue halo zone in the CTAB methylene blue agar plate confirmed the presence of anionic biosurfactant. The formation of insoluble ion pair precipitates in the agar plate containing methylene blue exhibited dark blue colour against the light blue background. In BATH assay, the bacterial cells indicated their affinity towards hydrophobic substrate. The isolate caused the maximum reduction in surface tension by 68.974 D/CM.

FTIR analysis

The molecular composition of biosurfactant manifest displayed the most prominent adsorption bands located at 3120 cm⁻¹, 2771 cm⁻¹ and 3001 cm⁻¹ (C–H stretching bands of CH₂ and CH₃ groups), 1735 cm⁻¹ (C = O stretching vibrations of the carbonyl groups), 1278 cm⁻¹ (C–O stretching bands formed between carbon atoms and hydroxyl groups in the chemical structures) and 794 cm⁻¹ (CH₃ group) (Figure 1).

GC-MS analysis

The fatty acid composition of biosurfactant was analyzed by GC-MS and compared with the library data. The biosurfactant comprised of long chain fatty acids, mainly C-10 long fatty acids. The major fatty acid of biosurfactant was C-10 decanoic acid. On the basis of FTIR and gas chromatography the structure of biosurfactant produced by Enterococcus sp. BS13 was predicted as glycolipid type (Figure 2).

Biofilm forming ability of BS13: BS13 formed biofilm in the test tube assay. Bacterial cells adhered on the internal surface of test tubes which eluded the biofilm production.

Biodegradation of polycyclic aromatic hydrocarbon (PAH): The isolate grew in the Bushnell Haas agar medium containing kerosene and diesel used as carbon source; it developed clear zone in Petri plate showing it’s PAH degradation activity.

Plant growth promoting traits of BS13: The isolate BS13 showed IAA production. Similarly BS13 showed marked phosphate solubilization as visualized by a clear zone around the colony after 48 h. The zone of hydrolysis gradually increased with the increase the incubation time reaching to 3.4 mm after 7 days. Change in the color of the chrome-azuril S medium from blue to orange-red confirmed the production of siderophore. The isolate BS13 changed colour of filter paper from yellow to reddish-brown after 2-3 days of inoculation confirming HCN production. BS13 isolate produced a wider zone of chitin hydrolysis in chitin minimal medium plate, indicating the chitinase production.

16S rRNA gene sequencing and phylogenetic analysis: The 16S rRNA gene sequence of the BS13 comprised of 1431 bp (NCBI GenBank accession No. KU99196). It showed 94% sequence similarity with Enterococcus faecium L3 (accession No. KJ728981) and Enterococcus faecium KCL1 (Accession No. KM497912). The generated 16S rRNA sequences were analyzed with Basic Local Alignment Search Tool (BLAST) available on NCBI website. A multiple sequence was produced followed by a guide-tree generation, phylogram and cladogram.
formation [36]. Therefore, the isolate BS13 has further been referred to as Enterococcus sp. BS13 (Figure 3).

In vitro antagonistic activity of BS13 and pure biosurfactant: The pure culture of Enterococcus sp. BS13 and its biosurfactant inhibited the radial growth of M. phaseolina by 72.3% and 53.2%, respectively after 7 day of incubation at 28 ± 1°C (Figures 4A and 4B). However, fungal growth inhibition was more pronounced in dual culture as compared to that of pure biosurfactant. Inhibition in fungal growth corresponded with incubation time.

Post-interaction events in mycelia of M. phaseolina: Enterococcus sp. BS13 in the zone of interaction resulted in halo cell formation, mycelial deformities and hyphal degradation of M. phaseolina. Formation and development of sclerotia of the pathogen were also arrested towards the zone of interaction; consequently such mycelia and sclerotia lost their vigour (Figures 5A–5C).

Pot trials: Enterococcus sp. BS13Met+Fus+ inoculated seeds showed significantly (P<0.01) increased seed germination, plant length and biomass over the control (Table 2). Enterococcus sp. BS13Met+Fus+ also resulted in reduction of disease caused by M. phaseolina after 30, 60 and 90 DAS (66.6%, 37.5%, and 42.5%) (Figure 6). Enterococcus sp. BS13Met+Fus+ strain showed effective root colonization as evidenced by the prominent population recovery from V. mungo rhizosphere 90 DAS (Table 3). The strain successfully colonized V. mungo roots, alone and in combination with M. phaseolina, and increased its population in rhizosphere.

Discussion
The isolate Enterococcus sp. BS13 was found more potential to secrete biosurfactant and promote plant growth. The biosurfactant had similarity with glycolipid type surfactant. Sharma et al. [37]
and produced biosurfactant. The importance of biofilm formation in plant growth promoting (PGP) rhizobacterial action has been studied by Seneviratne et al. [40]. In the present investigation Enterococcus sp. BS13 was found to degrade hydrocarbon. In agricultural soil increased contamination by different hydrocarbons is a serious environmental problem due to their persistence in nature for a long time. The use of biosurfactants is an alternative over the chemical surfactant as the former is a better biodegradable and ecofriendly [41]. Biodegradation of hydrocarbon has also been studied by Zhang et al. [42].

Auxins called indol acetic acid (IAA) are plant hormones which originate from an amino acid tryptophan. IAA production is widespread among plant associated bacteria. In the present study the Enterococcus sp. BS13 was found to produce IAA in vitro. IAA production by Enterococcus sp. has also been reported by Lee et al. [7]. Phosphorus plays a major role in many biological processes such as cell division, photosynthesis, sugar break down, energy and transfer of nutrient in crop plant. Enterococcus sp. BS13 efficiently solubilized phosphate in vitro. Ghosh et al. [43] also isolated phosphate solubilizing bacteria from the rhizosphere soil of seagrass. Iron is a necessary nutrient for all living organisms. In the soil it is directly assimilated by microorganisms because ferric iron (Fe III) which predominates in nature is only thriflly soluble and in very low concentration to support microbial growth. Enterococcus sp. BS13 was found siderophore producing in CAS medium. Similar study on siderophore production by Enterococcus faecium LKE12 has been performed by Lee et al. [7]. Enterococcus sp. BS13 showed the HCN production. HCN is a major chemical weapon to depress the growth of phytopathogen. HCN indirectly plays a major role in plant growth promotion by biological control of phytopathogen [44]. Similarly, HCN production has also been carried out by Gupta et al. [45] and Bhatia et al. [46]. Chitin is one of the most natural renewable polysaccharides present in cell wall of fungi, algae, insects and marine invertebrates. Enterococcus sp. BS13 showed the most significant chitinolytic activity in chitin minimal medium. Chitin is hydrolysed by chitinase enzyme [47]. Vaaje-Kolstad et al. [48] have also studied chitinase enzyme production by Enterococcus sp.

Several pesticides and herbicide are being used to control of phytopathogens in routine agriculture by farmers. These are not biodegradable and persist for long duration in the soil. Hence, biocontrol is the most vital alternative of this problem to maintain agricultural sustainability. In the present study, Enterococcus sp. BS13 displayed strong antagonistic properties and proved as a good biocontrol agent against M. phaseolina. Similar work on biocontrol efficiency of Enterococcus faecium has been carried out by Fhoula et al. [10].

Bacterial broth culture of Enterococcus sp. BS13 was used as seed treatments the most effective method for plant growth promotion of V. mungo and biocontrol of charcoal rot disease. Enterococcus spp. has earlier been reported for the biological control of different fungi including species of Aspergillus niger, Penicillium expansum, Botrytis cinerea, Verticillium dahliae [10]. Plant growth potential of E. faecium for enhancing the growth of rice plant has been reported by Lee et al. [7], which significantly enhanced the length and biomass of rice shoots in both normal and dwarf cultivars.

Conclusion

Based on our findings it may be concluded that Enterococcus sp. BS13 produces glycolipid type biosurfactant and bear PGP and biocontrol properties which may be exploited to develop an effective commercial biocontrol agent in future.

Acknowledgement

The authors are thankful to the Head, Department of Botany and Microbiology for providing laboratory facility.
Figure 6: Effect of Enterococcus sp. BS13^{Met+Fus+} growth of V. mungo in Pot experiment. T1, Enterococcus sp. BS13^{Met+Fus+} + M. phaseolina; T2, Enterococcus sp. BS13^{Met+Fus+}.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Germination (%)</th>
<th>Shoot length (cm)</th>
<th>Root length (cm)</th>
<th>Shoot Weight Fresh/ Dry</th>
<th>Root Weight Fresh/ Dry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enterococcus sp. BS13<sup>Met+Fus+</sup></td>
<td>80.0</td>
<td>48.1</td>
<td>17.7</td>
<td>5.43<sup>+</sup>/ 0.912<sup>+</sup></td>
<td>1.85<sup>+</sup>/ 0.087<sup>+</sup></td>
</tr>
<tr>
<td>Enterococcus sp. BS13<sup>Met+Fus+</sup> + M. phaseolina</td>
<td>76.66</td>
<td>45.2</td>
<td>16.5</td>
<td>5.10<sup>+</sup>/ 0.89<sup>+</sup></td>
<td>1.81<sup>+</sup>/ 0.085<sup>+</sup></td>
</tr>
<tr>
<td>Control</td>
<td>63.33</td>
<td>38.9</td>
<td>13.9</td>
<td>3.998</td>
<td>0.793</td>
</tr>
</tbody>
</table>

*Values are the mean of triplicates; ns-non significant; ** Significant at 1% LSD as compared to control.

Table 2: Effect of Enterococcus sp. BS13^{Met+Fus+} on the growth of V. mungo under pot assays after 90 days*.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Bacterial population (log10 cfu)*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30 days</td>
</tr>
<tr>
<td>Enterococcus sp. BS13<sup>Met+Fus+</sup></td>
<td>6.38</td>
</tr>
<tr>
<td>Enterococcus sp. BS13<sup>Met+Fus+</sup> + M. phaseolina</td>
<td>7.20</td>
</tr>
</tbody>
</table>

Values are mean of three replicates.

Table 3: Root colonization of V. mungo by Enterococcus sp. strain BS13^{Met+Fus+} at 30, 60 and 90 days*.

References

OMICS International: Open Access Publication Benefits & Features

Unique features:
- Increased global visibility of articles through worldwide distribution and indexing
- Showcasing recent research output in a timely and updated manner
- Special issues on the current trends of scientific research

Special features:
- 700+ Open Access Journals
- 50,000+ editorial team
- Rapid review process
- Quality and quick editorial, review and publication processing
- Indexing at major indexing services
- Sharing Option: Social Networking Enabled
- Authors, Reviewers and Editors rewarded with online Scientific Credits
- Better discount for your subsequent articles

Submit your manuscript at: http://www.omicsonline.org/submission/