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Introduction
The more general exponential screened coulomb (MGESC) 

potential expressed as:

( ) ( )( )20 1 1 rVV r r e
r

αα −= − + +                 (1)

is a potential of great interest which on expansion comprises of the 
sum of coulomb potential, modified screened coulomb or the Yukawa 
potential and a modified exponential potential given as:

( ) 2 20 0
0

r rV VV r e V e
r r

α αα− −= − − −                 (2)

This potential is known to describe adequately the effective 
potential of a many-body system of a variety of fields such as the 
atomic, solid state, plasma and quantum field theory [1]. The problems 
arising from screened coulomb potential is of indubitable importance 
in physics and chemistry of atomic incidence. To tackle this problem, 
various methods have been applied both numerical and analytical. 
These methods include the WKB method [2] and various types of 
perturbation method [3-5]. Upon expansion of the MGESC Potential 
in eqn. (1) given as:
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The coefficient Vi of eqn. (3) can be obtained so that the perturbation 
method [5] may be applied. Recently, a novel perturbative formalism 
which is based on decomposing the radial part of the Schrodinger 
equation into two, having an Exact solvable part and approximate 
treatment depending on the nature of the perturbed potential [1] have 
been applied on the MGESC potential and bound state energies as well 
as wave functions to both bound and continuum region have been 
obtained. Hence, the Schrodinger equation for the MGESC Potential 
doesn’t admit exact solution. For this reason, Sever and Tezcan [6] 
applied the large-N expansion following the method proposed by 
Mlodinow and Papanicolaou [7] to obtain the energy eigenvalues for 
the ground state and the first excited state as well as their corresponding 

wavefuntions. Roy in 2013 carried out extensive studies on some 
exponential screened coulomb potentials such as the Exponential 
Cosine Screened Coulomb (ECSC) and General Exponential Screened 
Coulomb (GESC) potential with special emphasis on higher states 
and stronger interactions [8]. In his speculative studies, he obtained 
bound state solutions of both screened potentials via the Generalized 
Pseudospectral (GPS) Method and computed reasonable results 
for the energy eigenvalues at different states compared with other 
results obtained in the literature. Ita and Ekuri, carried out studies on 
the MGESC potential for diatomic molecules to obtain boundstate 
solutions of the Schrodinger equation using the Nikiforov-Uvarov 
(NU) Method [9].

The Yukawa potential, in atomics and particle physics expressed 
in the form:

( ) 2 0 
kmr

r
yukawa

e VV r g e
r r

α
−

−− ≡−=                  (4)

where g is the magnitude scaling constant, m is the mass of the affected 
particle, r is the radial distance to the particles, k is another scaling 
constant was first proposed by Hideki Yukawa in 1935 on the paper 
titled “On the interaction of Elementary Particles” In his work, he 
explained the effect of heavy nuclei interaction on peons. According 
to Yukawa, he expanded that the interactions of particles is not always 
accompanied by emission of light particles when heavy particles are 
transmitted from neutron state to proton state, but the liberated energy 
due to the transmission is taken up sometimes by another heavy 
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Abstract
There has been a growing interest in investigating the approximate solutions of the Klein-Gordon equation and 

relativistic wave equations for some physical potential models. This is due to the fact that the analytical solutions 
contain all the necessary information for the quantum system under consideration. In this paper, we obtained 
the solutions of the Klein-Gordon equation with more general exponential screened coulomb (MGESC), Yukawa 
potential (YP) and the sum of the mixed potential (MGESCY) using the Parametric Nikiforov-Uvarov Method 
(PNUM). The bound state energy eigenvalues and the corresponding un-normalized eigenfunctions expressed in 
terms of hypergeometric functions are obtained.
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and their corresponding wavefunctions as well as providing information 
regarding sample dipole polarizability. Onate and Ojunubah, applied 
the supersymmetric shape invariance approach and formalism on a 
class of Yukawa potential is expressed [19]:

( )
2

2

r rbr rce aeV r
r

−∝ − ∝− + −
=                    (7)

and obtained bound state energy eigenvalue calculations. They deduced 
three different energy representations for the following potentials 
such as the coulomb, Yukawa and inversely quadratic Yukawa as they 
obtained their normalized wavefunctions and energy eigenvalues, 
compared to other related work via the NU and AP method in their 
literature and the values obtained yielded reasonable result. Ita et 
al., obtained bound state solutions of the Schrödinger’s equation for 
Manning-Rosen plus a Class of Yukawa (MRCY) potential given as 
[20]:
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               (8)

From their calculations, they deduced three different potential 
such as the Manning-Rosen, Yukawa and inversely quadratic Yukawa 
potential and obtained bound state energy eigenvalues as well as wave 
functions for different principal quantum number n for the s-state. 
In the view of relativistic quantum mechanics, a particle moving 
in a potential field is described particularly with the Klein-Gordon 
(KG) equation. Over the years numerous works have been reported 
concerning the Klein-Gordon equations for various kinds of potentials 
by using different Methods such as supersymmetry, supersymmetric 
WKB approach, Nikiforov-Uvarov Method [21-30]. Ikhdair, obtained 
approximate analytical bound state solution of the Klein-Gordon 
equation with equal Scalar and Vector Eckart type potential given in 
eqn. (9) [31].
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via the NU Method. Both energy equation as well as the un-normalized 
wave functions expressed in terms of the Jacobi polynomial was 
obtained. Ikot et al. obtained approximate analytic solutions of the 
Klein-Gordon in D-dimension for any l-state for a seven parameter 
type potential expressed as [32]:

( ) ( ) ( ) ( ) ( )
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α α

α αα α
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  (10)

where A,B,C,F and G are potential parameters, q is the deformation 
parameter, b=e2αre, re is the distance from equilibrium position and α 
is the screening parameter. In their work, they obtained both bound 
and scattering state with energy spectrum of some special potential 
such as Hulthen, Manning-Rosen, Eckart and Wood-Saxon potential. 
Hansabadi studied a special kratzer-type potential where:

V(r) ¹ S(r) and obtained bound state solution of the Klein-Gordon 
equation with position dependent mass ( ) 1

0
mm r m
r

= +  as well as the 
wavefunction [33]. Since then many literatures have reported different 
special case of potential such as, Poschl-Teller potential Rosen-Morse 
and many more by applying different methods. Moreover when arbitrary 
angular momentum quantum number l is present, one can only solve 
the SE and KGE approximately using suitable approximation scheme. 

particles, which will be transformed from proton state into neutron 
state [10]. The Yukawa potential is a potential that decreases more 
rapidly with distance and can be expressed as the coulomb potential 
when m→0. Since then, numerous researches had been conducted by 
various scientists to obtain bound state of the potential by applying 
different scientific Methods. Gerry and Lamb in studied the screened 
coulomb potential of the Yukawa type by using a scaling Variational 
method based on the SO(2,1) Subgroup of the full SO(4.2) dynamic 
group of the point coulombic problem to obtain both energy eigenvalues 
for different states and Normalized wave functions [11]. Gerry and 
Lamb, applied the large-N phase Integral approximation based on the 
coherent states of SO(2,1) (SU(1,1)) to coulomb-like problems where 
they obtained energy eigenvalue for s-states of the Yukawa potential. 
Hamzavi and co-workers in studied the Yukawa potential via a two 
body semi-relativistic (Spinless Salpeter) SS equation and obtained 
bound state energy values and their corresponding Normalized 
wavefunctions for short range Yukawa potential with arbitrary l-state 
using parametric NU Method. In their literature, it was spelt out that 
the known Static Screened Coulomb Potential (SSCP) yield reasonable 
results only for the innermost state when Z is Large whereas, gives 
rather poor result for the outermost and middle atomic states [12]. 
Dutt et al. carried out studies on a screened coulomb potential by using 
a Rayleigh-Schrodinger Perturbation theory and obtained energy eigen 
values for large values of screening parameters [13]. Their calculations 
to the energy eigenvalue yield reasonable result compared to other 
numerical and analytical methods. Hamzavi and his colleagues applied 
the NU Method to the Yukawa potential for any l-state and obtained 
bound state approximate analytical solutions [14]. Computed values for 
the bound state energy for different states were obtained and compared 
with the (Asymptotic Iteration Method) AIM, Supersymmetric (SUSY) 
and Numerical method appearing in their literature. Gerry and Lamb, 
obtained the energy eigenvalues for the Yukawa potential by using the 
Generalized Scaling Variational method for a system with a spherically 
symmetric potential coulumbic at the origin [15]. The energy 
eigenvalues for different states and different screening parameters for 
bound states were obtained and these values were in agreement with 
those obtained in the literature Dutt and Varshni, studied the energy 
levels of neutral atoms by applying the shifted large-N expansion to 
the Yukawa potential with a modified screening parameter [13]. They 
obtained energy values for the k-shell over the range of atomic number 
Z up to 84 and compared with those obtained within the framework of 
hyper-viral-pad scheme and observed that the large-N techniques may 
also be applied in other areas of atomic physics. Sharma et al. calculated 
bound state for all angular momenta for superposed two static screened 
coulomb potentials (SSCP) expressed as [16]:

( ) ( )1 2 /r rV r g e g e rα γα− −=− +                 (5)

Where g1 and g2 are coupling constants, α is the screening parameter 
and γ is the screening strength. By subjecting g1=0 the modified screened 
coulomb potential as well as its numerical calculations for the bound 
state is obtained. Pakdel et al. studied the Dirac equation with scalar 
and vector potential for the Yukawa potential and obtained both bound 
and scattering states [17]. In their calculations, the energy eigenvalues 
for different values of n and k was reported numerically as well as their 
corresponding eigenstates. Since the screened coulomb potential plays 
significant role in microscopic fields, this potential have been applied 
in different branches of atomic and molecular physics and chemistry. 
For this reason, Roy, carried out studies on the critical parameters and 
spherical confinement of H atom in screened Coulomb potential using 
the GPS method [18]. He extended his studies towards finding bound 
state energy eigenvalues for the screened coulomb potential:
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Some of such approximations include convectional approximation 
scheme proposed by Greene and Aldrich improved approximation 
scheme elegant approximation scheme. These approximations are 
used to deal with the centrifugal term or potential barrier arising from 
the problem of interest [16,34-39]. Not much has been achieved on 
the Schrodinger equation for the MGESCY potential over the years. 
The aim of this report is to obtain bound state solutions of both 
Schrödinger equation for the More General Exponential Screened 
Coulomb Potential plus Yukawa (MGESCY) potential.

Theoretical Approach
The Nikiforov-Uvarov method is based on the solutions to a 

second-order linear differential equation with special orthogonal 
function [23]. The hyper-geometric type has been used to solve the 
Schrödinger, klein-Gordon and Dirac equation for different kind of 
potentials [25-30].

The more generalized form of nikiforov-uvarov method

Given a second order differential equation of the form:

( ) ( )
( ) ( ) ( )

( ) ( )2 0
s s

s s s
s s

τ σ
ψ ψ ψ

σ σ
+ +′ ′ =′               (11)

In order to find the exact solutions to eqn. (11), we set the 
wavefunction as:

( ) ( ) ( )s s sψ φ χ=                  (12)

And on substituting eqn. (12) into eqn. (11), then eqn. (11) reduces 
to hypergeometric type:

( ) ( ) ( ) ( ) ( ) 0s s s s sσ χ τ χ λχ′′ ′+ + =              (13)

where the wave function ϕ(s) is defined as the logarithmic derivative,
( )
( )

( )
( )

s s
s s

φ π
φ σ

=
′                                                 (14)

where π(s) is at most first order polynomials.

Likewise, the hyper geometric type function ϕ(s) in eqn. (13) for a 
fixed n is given by the Rodriques relation as:

( ) ( ) ( ) ( )
n

nn
n n

B ds s s
S ds

χ σ ρ
ρ

 =                                  (15)

where Bn is the normalization constant and the weight function ρ(s) 
must satisfy the condition:

( ) ( ) ( ) ( )nd s s s s
ds

σ ρ τ ρ  = 
                 (16)

with
( ) ( ) ( ) 2s s sτ τ π+=                                   (17)

In order to accomplish the condition imposed on the weight 
function ρ(s), it is necessary that the classical or polynomials τ(s) be 
equal to zero to some point of an interval (a,b) and its derivative at this 
interval at σ(s) > 0 will be negative, that is:

( ) 0
d s

ds
τ

< .                    (18)

Therefore, the function π(s) and the parameters λ required for the 
NU method are defined as follows:

( )
2

  
2 2

s kσ τ σ τπ σ σ− − = ± − + 
 

′ ′                   (19)

( )k sλ π= + ′                                   (20)

The s-values in eqn. (19) are possible to evaluate if the expression 
under the square root be square of polynomials. This is possible, if and 
only if its discriminant is zero. With this, the new eigenvalues equation 
becomes:

( ) 2

2

1
 , 0,1,2,

2n
n nnd d n

ds ds
τ σλ λ

−
= =− − = …                 (21)

On comparing eqns. (20) and (21), we can obtain the energy 
eigenvalues.

Parametric nikiforov-uvarov method

The parametric form is simply using parameters to obtain explicitly 
energy eigenvalues and it is still based on the solutions of a generalized 
second order linear differential equation with special orthogonal 
functions. The hypergeometric NU method has shown its power in 
calculating the exact energy levels of all bound states for some solvable 
quantum systems.

Given a second order differential equation of the form:

( ) ( )
( ) ( ) ( )

( ) ( )2 0
s s

s s s
s s

τ σ
ψ ψ ψ

σ σ
+ +′ ′ =′                 (22)

Where σ(s) and (s)σ are polynomials at most second degree and 
 ) (sτ is first degree polynomials. The parametric generalization of the 

N-U method is given by the generalized hypergeometric-type equation:

( ) ( ) ( )
( )

( )21 2
1 2 322

3 3

 1 '' '   0
1  1  

c c ss s s s s
s c s s c s

−  Ψ + Ψ + − + − Ψ = − −
     (23)

Thus eqn. (22) can be solved by comparing it with eqn. (23) and the 
following polynomials are obtained:

( ) ( ) ( ) ( ) ( ) 2
1 2 3 1 2 3  1 ,  s c c s s s c s s s sτ σ σ= − = − =− + −                (24)

The parameters obtainable from equation (23) serve as important 
tools to finding the energy eigenvalue and eigenfunctions.

Now substituting eqn. (24) into eqn. (19):

( ) ( ) ( )
1

2 2
4 5 6 3 7 8s c c s c c k s c k s cσ ± ± = + ± − + + + 

               (25)

where

( ) ( ) 2 2
4 1 5 2 3 6 5 1 7 4 5 2 8 4 3

1 1 1 , 2 , , 2 ,
2 2

c c c c c c c c c c c c= − = − = + = − = +   , 

2
9 3 7 3 8 6c c c c c c= + +                   (26)

The resulting value of k in eqn. (25) is obtained from the condition 
that the function under the square root be square of a polynomials and 
it yields,

7 3 8 8 9( 2 2)k c c c c c± = − + ±                  (27)

The new π(s) for k_ becomes:

( ) ( )4 5 9 3 8 8s c c s c c c s cπ  + − + −= 
                (28)

for the k_ value,

7 3 8 8 9( 2 2)k c c c c c− = − + −                     (29)

Using eqn. (17), we obtain:

( ) ( ) ( )1 4 2 5 9 3 8 8 2 2 2s c c c c s c c c s cτ  = + − − − + − 
                (30)

The physical condition for the bound state solution is τ'< 0 and thus:
 ( ) ( )3 9 3 82 2 0s c c c cτ = − − + <′                   (31)

with the aid of eqns. (20) and (21), we obtain the energy equation as:
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( ) ( ) ( )( )2
2 3 3 5 9 3 8 7 3 8 8 92 1 2 1 2 2 0c c n c n n c n c c c c c c c c− + − + + + + + + + =   (32)

The weight function ρ(s) is obtained from eqn. (16) as:

( ) ( )
11

1010
3

11
31

c
cc cs s c sρ − −−= −                 (33)

and together with eqn. (15), we have:

( ) ( )
11

10 10
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31 2
c

c c
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− − −  
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                  (34)

where

10 1 4 82 2c c c c= + + , ( )11 2 5 9 3 82 2c c c c c c= − + +                      (35)

and ( ),
nP α β are the Jacobi polynomials. The second part of the wave 

function is obtained from eqn. (14) as:

( ) ( )
13

1212
331

c
cc cs s c sφ − −= −                  (36)

where

12 4 8c c c= + ,  ( )13 5 9 3 8c c c c c= − + ,                   (37)

Thus, the total wave function becomes:

( ) ( ) ( )
11

13 10 10
12 312

3

1, 1

3 31 1 2
cc c cc cc c

n ns N s c s P c sψ
 

− − −  − −  = − −
               (38)

where Nn is the normalization constant.

The Klein-Gordon Equation
Given the Klein-Gordon equation as [25-27]:

( ) ( )( ) ( ) , ,i V r S r M rψ θ φ
 ∂ − − −∇ + +  ∂   

= 0             (39)

If one assigns the corresponding spherical total wave function:

( ) ( ) ( ), , ,lm

R r
r Y

r
ψ θ φ θ φ=                   (40)

where ( ) ( ) ( ),lmY θ φ θ φ= Θ Φ                  (41)

then the wave equation is separated into variables and the following 
equations are obtained:

( ) ( )( ) ( ) ( )
2 2 2

22 2 2
2 2 2

11  
l l c

i V r c S r M R r
c t r
 +∂ − − −∇ + + −  ∂   





  (42)

where M is the rest mass, i
t
∂
∂

 is energy eigen value, V(r) and S(r)are 

the vector and scalar potentials respectively:
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2 2

2 2  0
d d mcot

d sind
θ θ

θ λ θ
θ θθ

Θ Θ  
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                (43)

( )
( )

( )
2

2
2 0l

d
m

d
φ

φ
φ

Φ
+ Φ =                   (44)

Where λ=l(l+1) and 2
lm  are the separation constants and 

( ) ( ) ( ),  lmY θ φ θ φ=Θ Φ  is the solution of eqn. (43) and eqn. (44)

For the NU method to be applicable, eqn. (42) should be 
transformed into eqn. (22) to be solvable.

Solution of the radial part of the klein-gordon equation with 
more general exponential screened coulomb potential

Given the Klein-gordon equation as:

( ) ( )( ) ( ) ( )
2 2 2

22 2 2
2 2 2

11  0
l l c

i V r c S r M U r
c t r
 +∂ − − −∇ + + − =  ∂   





  (45)

where M is the rest mass i
t
∂
∂

 is energy eigen value V(r) and S(r) are the 

vector and scalar potentials respectively.

The radial part of the Klein-Gordon Equation with vector V(r) 
potential=scalar S(r) potential in atomic units (ħ=c=1) is given as:

( ) ( ) ( ) ( ) ( ) ( )
2 2 2

2 2 2
2 2 2 2

11    2 0
d U r l l c

E M c E Mc V r U r
dr c r

 +
+ − − + − = 

 




  (46)

eqn. (46) should be transformed into eqn. (22) to be solvable. Hence, 
using the transformation U(r)=rR(r), we obtain:

( ) ( ) ( ) ( ) ( ) ( ) ( )
2 2 2

2 2 2
2 2 2 2

12 1  –  2  0
d R r dR r l l c

E M c E Mc V r R r
dr r dr c r

 +
+ + − + − = 

 




  (47)

Given the More General Exponential Screened Coulomb (MGESC) 
potential as:

( ) ( )( )20 1 1 rVV r r e
r

αα −= − + + ,                   (48)

where V0 is the potential depth of the MGESC potential and α is an 
adjustable positive parameter.

The MGESC potentials can also be expressed as:

( ) ( )2 2
0 0 0

1 r rV r V V e V e
r

α αα− −= − + +                 (49)

Including the centrifugal term, the effective potential Veff (r) of the 
MGESC potential can be expressed as:

( ) ( ) ( ) ( )( ) ( )2 2 2 2
20

2 2

1 1
1 1 r

eff

l l c l l cVV r V r r e
r r r

αα −+ +
= + = − + + +

   (50)

Substituting potential of eqn. (49) into radial Klein-Gordon 
equation of eqn. (47), we obtain:

( ) ( )

( ) ( ) ( )( ) ( ) ( )

2 

2 2 2
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2 2 2 20

2

2 1  

1
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  (51)
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d R r dR r
dr r dr c

l l cV VE M c E Mc e V e V r R r
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  (52)

( ) ( ) ( ) ( )( )( )
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2 2 2 2 2 2
0 0

– 22 1  0
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r

r

E M c E Mc V e rd R r dR r
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α

α
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−
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 + + =
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  (53)

Introducing the following dimensional parameters:

( ) ( )( )( )
( )( )( ) ( )

2 2 2 2 2 2 2
0
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0 0 1
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r
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E M c E Mc V e c

E Mc V V e V e c l l c

α

α

β α ε

γ

−

− −∝
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, (54)

Then eqn. (53) can be given as:

( ) ( ) ( )
2

2 2
2 2

2 1 0nl nl
nl

d R r dR r
r r R r

dr r dr r
β ε γ + + − + − = 

           (55)

eqn. (55), is a simplified form of the second order differential equation 
in eqn. (23). Comparing eqn. (55) and solving explicitly, we obtain the 
Energy eigenvalues of the KGE for the MGESC potential as:

( ) ( )( ) ( )( )
( )( )

2
2

0 02 2 2 2 2 2
0

2
– 2

2 1 4 1 1

r
r

E Mc V V e
E M c E Mc V e c

n l l

α
αα

−
−

 + + = − + −
 + + + + 

   (56)
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and the Radial wavefunction of the KGE for the MGESC potential as:

( ) ( ) ( ) ( )2 12
, 2

v

n l nr N v e L vδ δδψ β
− −−=                (57)

Where 1 ,
2

α δ− =  n is a positive integer and Nn,l is the normalization 
constant:

Solutions to the radial part of the klein-gordon equation for 
the yukawa potential

The radial part of the Klein-Gordon Equation with vector V(r) 
potential=scalar S(r) potential in atomic units (ħ=c=1) is given as:

( ) ( ) ( ) ( ) ( ) ( )
2 

2 2
2 2

1
    2 0

d U r l l
E M E M V r U r

dr r
 + 

+ − − + − = 
 

      (58)

Given the Yukawa potential (YP) as:

( ) 1
rV eV r

r

−∝

= −                  (59) 

Substituting potential of eqn. (59) into the Klein-Gordon equation 
of eqn. (58), we obtain:

( ) ( ) ( ) ( ) ( )
2 

2 2 1
2 2

1
    2 0

rd U r l lV eE M E M U r
dr r r

−∝  + 
+ − − + − − =   
    

  (60)

Since the Klein-Gordon equation with above combine potentials 
rarely has exact analytical solution, an approximation to the centrifugal 
term has to be made. The good approximation for 1/r2 in the centrifugal 
barrier is taken as:

( )
2

22

1

1  rr e α

α
−

=
−

, 
( )

1
1 rr e α

α
−

=
−

                (61)

Similar to other related work

Making the transformation rs e α−=  eqn. (59) becomes:

( ) 1

1
V SV s

S
∝

= −
−

                 (62)

Again, applying the transformation s=e-αr to get the form that NU 
method is applicable, eqn. (60) gives a generalized hypergeometric-
type equation as:

( ) ( )
( )

( )
( )

( ) ( )( ) ( )
2 

2 2 2 2
22 2

1 1 ( ) 2 1 0
1 1

d U r s dU s
B s B s l l U s

dr s s ds s s
β β β

−  + + − + + + − + + = − −
, (63)

Where

2 2
2

12 ;   2E M E MB Vβ
α

− + − = =  ∝  
                 (64)

Comparing eqn. (63) and solving explicitly, we obtain the energy 
eigenvalues of the KGE for the Yukawa potential as:

( ) ( )

( ) ( )

2

2

2

1 12 2 1 1
2 4

12 1 2 1
4

B n n n l l

n l l

λ
β λ

  − + + + + + + +  
  = −

 
+ + + + 

 

,     (65)

eqn. (65) can be solved explicitly and the energy eigen spectrum of YP 
becomes:

( ) ( ) ( )

( ) ( )
( )

2

2
1

2 2 2

1 12 1 2 2 1 1
2 4 1

12 1 2 1
4

E Ml l V n n n l l
E M l l

n l l

α
 +   + − + + + + + + +    

    − = − ∝ − +
 

+ + + + 
 

, (66)

( )

( )

2
2

1
2 2 2

2 1
 

2 1

E M V n l
E M

n l
α

 +  − + +    − = − ∝
+ + 

  

             (67)

Hence, the wavefunction is given bellow as:

( ) ( )( )20 11 1
r

rV V eV r r e
r r

αα
−∝

−= − + + − ,                 (68)

where Nn,l is the normalization constant:

Solutions to the radial part of the klein-gordon equation for 
the more general exponential screened coulomb plus yukawa 
(mgescy) potential

By combining eqns. (1) and (4), we obtained an expression for 
mixed potentials given as:

( ) ( )( )20 11 1
r

rV V eV r r e
r r

αα
−∝

−= − + + −              (69)

Substitutin eqn. (69) into eqn. (47) gives:
( ) ( )

( ) ( ) ( )( ) ( ) ( )

2 

2 2 2

2 2
2 2 2 20 1

2

2 1  

1
–  2 1 1   0

r
r

d R r dR r
dr r dr c

l l cV V eE M c E Mc r e R r
r r r

αα
−∝

−

+ +

 + 
− + − + + − − =  

  




  (70)

we obtained both bound state solution as well as un-normalized wave 
function of the Klein-Gordon equation after solving eqn. (70) explicitly 
by applying the NU method as 

( ) ( )( ) ( )( )
( )

2
2

0 0 12 2 2 2 2 2
0

2
– 2

2 1 4 1

r r
r

E Mc V V e V e
E M c E Mc V e c

n

α
αα

γ

− −∝
−

 + + +
 = − + −
 + + + 

  (71)

and

( ) ( ) ( ) ( )
1 1 4 1 1 1 4 1 12 2 2

l l l lr
nl n nR r N r e L rβ β

− + + + + + +−=               (72)

if 1(2 )r vβ −= and ( )1 4 1 1
2

l lα = + +               (73)

substituting eqn. (73) into eqn. (72), we obtain:

( ) ( ) ( )
11

1 22 22
, 2

v

nl n l nR r N v e L v
αα αβ

− + −− +=                 (74)

where Nn,l is the normalization constant.

Conclusion
The analytical solutions of Klein-Gordon equation for the more 

general exponential screened coulomb plus yukawa (MGESCY) 
potential has been presented via the NU method. The Nikiforov-
Uvarov (NU) method employed in the solutions enables us to 
explore an effective way of obtaining the energy eigenvalues and their 
corresponding eigenfunctions in terms of Jacobi polynomials.
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