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Abstract
Bovine mastitis is a multifactorial disease, commonly caused by microorganisms. The pathology affects dairy 

farms worldwide and causes significant economic losses. Different pathogens can cause the disease and they 
are classified as contagious, environmental and minor pathogens. Streptococcus uberis is a ubiquitous bacterium 
and is considered the main environmental agent. It is a very versatile microorganism able to use host factors 
to survive and colonize bovine mammary gland. Different virulence factors have been reported in S. uberis 
strains, such as proteoglycans and various proteins, which are secreting in milk facilitating the establishment of 
intramammary infections. Strategies for the control of environmental agents have less impact compared to those 
applied for contagious agents. Furthermore, intramammary infections are associated with biofilm formation which 
leads to antibiotic resistance making the treatment of recurrent infections hard. Thus, different alternative control 
methods have been proposed, as the use of bacteriocins and immunomodulatory compounds. The present review 
summarizes different studies about the characterization of S. uberis virulence factors and the importance of the 
studies to promote and design effective and novel therapeutic approaches.
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Introduction
Bovine mastitis is the most common pathology that affects dairy 

farms around the world, causing significant economic losses due to 
reduced milk production and cow health, antibiotic therapy, slaughter 
and the death of livestock. Mastitis incidence differs locally and represents 
the highest cost in the dairy industry. The disease has been a reason 
of attention, and to improve its control has been of hight concern for 
several decades. It is the most common disease of antibiotic treatment in 
dairy farms. In the world, clinical mastitis losses are estimated from US$ 
7561 to US$ 119 per cow, with variances among different farms [1,2]. 
In Argentina, it was estimated that the decrease in milk production and 
quality was about more than 220 million pesos per year in the 1980s [3]. 
Then efforts were focused on improving the hygiene quality and milk 
health through a high mastitis control [4].

Mastitis pathogens are categorized as contagious and environmental. 
Different reports about frequency and type of microorganism isolated 
reveal that Streptococcus uberis is globally recognized as one of the 
most important environmental pathogens implicated in intramammary 
infections [5]. On the other hand, Staphylococcus aureus is the most 
prevalent contagious pathogen present in dairy herds [6]. However, 
pathogen incidence can vary geographically.

The intensive administration of antibiotics in the treatment and 
control of mastitis is associated to an increase in the resistance of 
microorganisms to antibiotics, with their implications for human health 
due to the risk of passage of resistant strains to the food chain and then 
to man. In addition, application of  antibiotic therapy during lactation, 
involves the removal of the animal from the productive circuit in order 
to avoid the presence of antibiotics in milk which leads to significant 
economic losses [7]. The economic losses produced by the disease have 
guided studies towards the search of strategies for the prevention and / 
or treatment of bovine mastitis in order to optimize milk production, 
ensure safety products and promote regional economic growth. One 
of the biggest challenges of the dairy industry is to reduce the use of 
antibiotics in food-producing animals, focusing the research studies 
on the search for alternative control methods. Bacteriocins offer an 

alternative  as potential antibacterial agents for the treatment of mastitis  
[8-10]. In addition, the application of immunomodulatory compounds 
to stimulate the specific immune response of the mammary gland is one 
of the alternative therapies currently studied [11].

S. uberis, is the main environmental agent responsible for bovine 
mastitis, and it is characterized by virulence factors such as proteoglycans 
and several proteins, and when secreted in milk cause intramammary 
infections [12-14]. Furthermore, a high genetic diversity was found 
among the strains by using different techniques  makes the searching 
of effective control strategies difficult. Pulse field gel electrophoresis 
(PFGE) is the current standard method used in order to characterize 
genetic patterns. Albuquerque et al. (2017), showed the usefulness of 
dot blot and MLSA assays to evaluate S. uberis population structure [15].

Intramammary infections are difficult to eliminate due to their 
multifactorial nature, and their control requires a program based on the 
prevention of new infections and the elimination of existing ones [16]. 
The implementation of a 5-point control plan has allowed a reduction 
incidence of mastitis cases due to contagious pathogens, such as S. 
aureus and Streptococcus agalactiae [17]. However, these measures have 
shown less impact on the incidence of mastitis caused by environmental 
pathogens. Despite the economic impact caused by the high prevalence 
of environmental streptococci in most dairy herds with conventional 
management practices, there is still no in-depth knowledge of the 
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virulence determinants associated with the pathogenesis of bovine 
mastitis caused by these microorganisms. Consequently, the strategies 
for the control of this type of mastitis are deficient and inadequate.

The present review summarizes different studies investigating S. 
uberis virulence factors and the importance of the studies to promote 
and design effective and novel therapeutic approaches.

Bovine mastitis

Bovine mastitis is an inflammatory disease of the mammary gland, 
most frequently caused by pathogen agents, to a lesser extent by trauma 
or chemical origin injuries [18]. The inflammatory process is generated 
by the presence of inflammatory mediators that lead to invasion of 
leukocytes into the mammary gland [19]. Mastitis is considered as a 
multifactorial disease because the risk of infection is related to the cow's 
immunity system, the inoculum and virulence of the microorganism, 
the environmental conditions and the milking management established 
in the herd [20].

Different pathogen agents can cause the disease and they are 
classified as contagious, environmental and minor pathogens. 
Contagious pathogens are associated with infected udders, nipple 
lesions and colonization of the nipple canal. The reservoir is the cow 
and the pathogens are transmitted by cow-cow contact, or from teat to 
teat during and after milking. The most representative microorganisms 
of this group are S. aureus and S. agalactiae. Environmental pathogens 
are widely distributed in different sites where the animals eat, sleep 
and transit, especially in humid places or with high content of organic 
matter. This group is formed by coliforms, S. uberis and Pseudomonas 
aeruginosa. Infections caused by these pathogens are more difficult to 
control because they occur in cow transition periods from three weeks 
pre-calving to four weeks postpartum. Among the minor pathogens 
Corynebacterium bovis and coagulase negative staphylococci (CNS) 
are included. CNS group has become important in the last few years, 
as commensal and opportunistic agent causing important infections 
[21,22].

Streptococcus uberis

By the year 1928, descriptions of streptococci with different 
properties compared to the common pathogens that cause mastitis were 
reported. Over the following years and until 1932, reports from several 
researchers in Europe contributed to the importance of differentiate 
these microorganisms in different species. The name S. uberis was 
proposed by Diernhofer in 1932 in order to identify streptococci 
associated with bovine mastitis [23]. The agent was characterized 
according to the following biochemical characteristics: presence of 
smooth and round colonies on agar, turbidity in broth medium, presence 
of diplococci, ability to ferment glucose, lactose, sucrose, mannitol and 
salicin, lack of raffinose and glycerol fermentation, positive hipurate 
and esculin hydrolysis, and presence of greenish colonies on blood agar 
plates. Then, Selley in 1951 contributed to the characterization of this 
agent demonstrating the nutritional requirements as nicotinic acid,   
pyridoxine,   thiamine,   riboflavin,   folic   acid,   pantothenic   acid   
and biotin; tryptophan, phenylalanine, arginine, valine, leucine and 
glutamic acid [24]. Some years later, in 1997 Kitt and Leigh 1997 found 
S. uberis strains auxotrophic for 13 amino acids [25].

S. uberis is a gram-positive coccus, facultative anaerobe with high 
nutritional requirements. It is not a spore former and is negative for 
biochemical tests of oxidase and catalase. Currently it belongs to the 
Streptococcaceae family, which includes pathogenic, commensal and 
opportunistic species. Analysis of the S. uberis genome demonstrated 

the ability of S. uberis to live in different ecological niches due to its 
nutritional flexibility indicating that it can adapt to different types of 
environments as an opportunistic pathogen [26].

Phylogenetic analysis proposed by Bentley et al. (1991) placed 
S. uberis within the pyogenic group with Streptococcus pyogenes, 
Streptococcus dysgalactiae subsp. equisimilis, Streptococcus agalactiae 
and Streptococcus dysgalactiae, Streptococcus equi, Streptococcus canis 
and Streptococcus iniae [27]. Lancefield's classification system is used 
to classify streptococcal species, although S. uberis is not classifiable by 
this method because no group of antigens is kept among the strains [28]. 
Phenotypic identification of S. uberis is determined on conventional 
protocols such as examination of cultural and morphological 
characteristics, standard biochemical tests, and enzyme activity [29,30]. 
In order to confirm identification, molecular assays were designed 
[31-34]. Correct identification is necessary for an efficient therapeutic 
choice and for also supervising the mastitis control schemes in the 
herds. A scheme designed by Odierno et al. (2006) could biochemically 
identify typical and atypical S. uberis isolates [30]. Furthermore, this 
scheme showed a clear correlation with 16S rDNA RFLP for most 
streptococcal and streptococcal-like species [35].

S. uberis is a ubiquitous agent isolated from different parts of the 
body cow, bedding and soil and elements of the dairy herd environment 
as well. It has been associated with subclinical and clinical mastitis in 
lactating and non-lactating cows and can also live on the mammary 
gland leading to chronic intramammary infections [36-38]. Mastitis 
subclinical chronic infections are considered extremely costly and 
difficult to treat [39]. S. uberis has a great ability to colonize epithelial 
cells of the mammary gland, evading the host defense mechanisms 
leading to antibiotic resistance through the virulence factors.

Virulence factors
Phenotypic studies have allowed the identification and 

characterization of potential virulence determinants (capsule, 
plasminogen activating factor, uberis factor, M-like and R-like proteins, 
neutrophilic toxin, hyaluronidase, extracellular matrix binding 
proteins) in S. uberis strains [36]. However, it is known that virulence 
factor expression in bacteria could be controlled by signals from the 
environment. Therefore, the S. uberis genome, has been sequenced 
complety, being a valuable resource to facilitate the study between S. 
uberis and the bovine host [26, 40].

Different virulence factors of S. uberis have been described, such 
as proteoglycans and various proteins, which are secreting in milk 
facilitating the establishment of intramammary infections [41-43]. 
Briefly, virulence factors includes: plasminogen activator proteins 
such as PauA and PauB and SK, resistance to phagocytosis presented 
by a hyaluronic acid capsule, CAMP factor, a surface dehydrogenase 
protein GapC, sortases, Opp proteins implicated in dynamic transport 
of solutes, lactoferrin binding proteins, and adherence and invasion of 
epithelial cells mediated by SUAM [42-51].

Streptococci agents are able to activate plasminogen thanks to 
the action of secreted enzymes [52]. Bacterial plasminogen activators 
comprise streptokinase produced by different Streptococcus pathogen 
species and differ greatly in structure [44,53]. Streptokinase Esk 
was purified from S. equisimilis and its amino acid sequence is quite 
different from the classical streptokinases studied [44,54]. Likewise, a 
plasminogen activator, named PadA was identified in bovine isolates 
of Streptococcus dysgalactiae [55]. This activator could activate bovine, 
ovine, equine, and rabbit but not human plasminogens. Furthermore, 
Wiles et al. (2010) described a plasminogen named skizzle (SkzL), 
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produced by Streptococcus agalactiae, which has a sequence identity 
lower than streptokinase and staphylokinase [56]. Reports have shown 
that S. uberis is able to activate bovine plasminogen [41]. Streptokinase 
was a plasminogen activator described in Streptococcus spp. [44]. Once 
plasminogen is activated to plasmin, it confers the access to deep tissues 
by its action on extracellular matrix proteins. Similarly, PauA activator 
(molecular weight of approximately 30 KDa) was the first plasminogen 
activator described in S. uberis strains capable of activating bovine, 
ovine and equine plasminogen, however it is not able to activate porcine 
or human plasminogen [42,57]. It is suggested that the activation of 
plasminogen by PauA could facilitate early colonization of the mammary 
gland because it promotes the removal of nutrients [41]. In vitro, it has 
been shown that PauA mediates the acquisition of plasmin in culture 
medium with the addition of plasminogen. During infection of the 
mammary gland, S. uberis is found predominantly in the luminal region 
of secretory alveoli and ductular tissue, indicating that bacterial growth 
occurs in residual and recently synthesized milk. This environment is 
probably deficient in free peptides and amino acids, so the activation of 
plasminogen by PauA could facilitate the growth of S. uberis because it 
indirectly affects the hydrolysis of casein to peptides with essential amino 
acids [44,57].  Binding of plasmin to the bacterial surface would also 
allow the availability of peptides near the cell surface [58]. In addition, 
plasmin allows the proteolytic to breakdown fibrin and connective 
tissue proteins, thus facilitating bacterial penetration of tissue barriers 
and their dissemination in the tissues around the infection.  A second 
plasminogen activator called PauB, with a molecular weight of 45 kDa, 
was identified by Johnsen et al. (1999) in a S. uberis strain isolated from 
a case of clinical mastitis in Denmark [44]. Ward and Leigh (2002) 
determined the absence of the plasminogen activator PauA in this strain 
and found that pauB gene was present in the locus normally occupied 
by pauA [43]. The authors demonstrated its activity on bovine, ovine, 
equine, goat, porcine, rabbit and human plasminogen.  Therefore, PauB 
represents another plasminogen activator with wide specificity but found 
at low frequency. Studies carried out by our research group found that 
pauA gene was found in 48 (61.5%) strains and no strain yielded pauB 
gene [59]. Most of the reported findings demonstrate that the PauA 
protein could also be used as  an antigen for the possible development of 
a vaccine subunit [60].

In the different streptococci, including S. pyogenes, Streptococcus 
milleri and Streptococcus suis exopolysaccharide capsules in 
phagocytosis resistance and in bacterial virulence are crucial [61-
65]. In addition, Okamoto  et al. (2004) reported that S. pyogenes 
exopolysaccharide capsule increases the adherence   to   alveolar   
epithelial   cells   and   stimulates   the   adhesion  to keratinocytes   via   
an  M-protein-independent   pathway [66,67].  The   hyaluronic acid 
capsule is encoded by hasABC genes and is one of the main virulence 
factors due to the role that it plays in phagocytosis [68]. has genes 
homologues of S. pyogenes are implicated in the capsule formation of 
S.uberis. Nevertheless, hasABC operon structure is not conserved in S. 
uberis strains [45]. Even though this capsule does not prevent against 
macrophages and not all the S. uberis strains are able to produce the 
capsule [45,59]. Hyaluronic acid blocks the Fc receptors on the surface 
of phagocytic cells avoiding the binding of opsonic antibodies onto the 
membrane of phagocytes and, therefore, the union and envelopment of 
opsonized bacteria.

An additional potential virulence factor reported is CAMP factor 
encoding gene cfu. CAMP factor is a protein initially discovered in S. 
agalactiae which produces the synergistic lysis of ovine erythrocytes in 
the presence of a ß-toxin S. aureus [69,70]. The deduced amino acid 
sequence of CAMP factor of S. uberis was found to be homologous 

to CFB amino acid sequence of S. agalactiae [46]. Different studies 
reported that CAMP factor and CAMP factor-like genes are quite 
widespread among the streptococci group, leastwise in serogroups A, B, 
C, G, M, P, R and U [71]. Furthermore, a linkage among CAMP gene cfa 
of S. pyogenes, cfb gene of S. agalactiae, cfu gene of S. uberis and cfg gene 
of S. canis was described by Hassan et al. (2000) [72]. Skalka and Smola 
(1981) reported a lethal effect of this factor when was administered 
parenterally in mice and rabbit and the active substance showed a 
similar effect like the CAMP factor of S. agalactiae [73]. Different 
studies have shown that not all S. uberis tested strains have a positive 
CAMP reaction although it could be a virulence factor [13,74,75].

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a 
ubiquitous enzyme found at the surface of several prokaryotic and 
eukaryotic organisms, it is involved      in      glycolysis      converting     
glyceraldehyde-3-phosphate     to     1,3-bisphosphoglycerate and  it  
has  been  implicated  as  virulence  factor [76,77].  The enzyme was 
firstly identified located on the surface of S. pyogenes and then it was 
found in streptococci groups B, C, E, G, H, and L [78]. Winram and 
Lottenberg (1996) described that the enzyme is expressed on the 
streptococcal cell surface and it is involved in different functions such 
as the attaching of S. pyogenes to plasmin [79]. Pancholi and Fischetti 
(1992) showed the ability of GAPDH to bind several host proteins 
[78]. Madureira et al. (2007) demonstrated that S. agalactiae GAPDH 
is a virulence-associated immunomodulatory protein [80]. Oliveira 
et al. (2012) reported a new and different function of the secreted 
GAPDH as an inducer of apoptosis of murine macrophages [81]. As the 
enzyme has also different functions to the original, it has been called 
“moonlighting proteins” [82]. A recent study showed that GAPDH is an 
appropriate vaccine candidate against bacterial and parasitic infections 
[83]. Furthermore, homology among GapC  products  of  S.uberis,  S.  
agalactiae  and S. dysgalactiae  strains  could  lead  to  the  design  of  
a  vaccine  containing  a specific chimeric protein covering protein 
regions of each species [84].

Sortase are enzymes involved in covalent attachment of enzymes, 
pilins, and adhesion-mediating large surface glycoproteins to the 
bacterial cell wall contributing to the development and maintenance of 
the infection, for which they are considered as virulence determinants 
[48]. Egan et al. (2010) identified sortaseA (SrtA) substrates in S. 
uberis strains and Leigh et al. (2010) studing a SrtA deficient strain of 
S. uberis reported that a number of sortase anchored proteins have a 
significant function in the pathogenesis of S. uberis infection [85,86]. 
In accordance with phylogenetic analyses, two different studies 
suggested the categorization of sortases in four subfamilies (A - D) or 
five subfamilies (SrtA, SrtB, and families 3 to 5) and GBS strains have 
sortases from two of these subfamilies [87,88].

One of the strategies of S. uberis to survive and colonize bovine 
mammary gland is through the binding to lactoferrin, which is normally 
found in milk and mammary gland secretions of non-lactating cows [89]. 
The binding to lactoferrin is mediated by an adhesion molecule of S. uberis, 
called SUAM, encoded by sua gene. SUAM has a molecular weight of 
approximately 112 KDa and has been identified and characterized [90]. 
It has been proposed that this molecule plays an important role in the 
pathogenesis of mastitis and is considered a potential virulence factor of 
this microorganism. Almeida et al. (2006) and Patel et al. (2009) suggested 
that SUAM, through its binding to lactoferrin (Lf) and subsequent 
binding to a receptor present on the surface of the mammary epithelial 
cell, would facilitate bacterial adhesion by triggering the internalization 
of this pathogen into the cellular cytoplasm [90,91]. The internalization 
provides a protective environment against phagocytosis by neutrophils and 
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antimicrobials present in milk. In vitro studies showed that SUAM plays 
a central role through adhesion and internalization in bovine mammary 
epithelial cells of S. uberis and consequently could be involved in biofilm 
formation. The adhesion molecule SUAM, together with the oligopeptide 
transport system (OppA) and a lipoprotein receptor (MutA antigen), 
would be involved in the infection as well as in the ability to adhere to the 
cells [91]. Consequently these factors could be involved in the formation of 
biofilm and have also been described as virulence factors.

A study carried out by Lasagno et al. (2011), characterized 
phenotypically S. uberis strains by the presence of virulence factors 
as plasminogen activator factor (PAF), hyaluronidase (HYA), capsule 
(CAP) and CAMP factor [13]. Sixty five percent, 56.3%, 59.4% and 25% 
of the strains expressed plasminogen activator factor, hyaluronidase or 
capsule and CAMP factor, respectively [13]. Taking into account the 
combination of virulence factors thirteen different virulence profiles 
were identified indicating a notable heterogeneity in their phenotypic 
characteristics. Similarly, other results determining the distribution of 
virulence-associated genes in 78 S. uberis strains by PCR showed that 
hasC gene was present in 89.7% of the strains, being the most common 
gene in the examined isolates. sua gene was found in 83.3%, gapC in 
79.4%, cfu in 76.9%, hasA in 74.3%, hasB in 66.6%, skc in 65.3%, oppF in 
64.1%, pauA in 61.5% and lbp in 11.5%. hasABC genotype was found in 
61.5% of the strains [59]. Perrig et al., (2015) reported that sua and pauA 
are prevalent and highly conserved genes, being important candidates 
to be included in a mastitis vaccine against S. uberis [92]. Results of our 
group show that not all the virulence genes could be amplified in all the 
analyzed strains, nevertheless all of them were present in combination, 
indicating that other virulence factors may be implicated [12,59]. 
Furthermore, results revealed the absence of classical virulence factors 
such as those present in other species of Streptococcus [59].

Bovine mastitis and biofilm

Several species of streptococci, such as Streptococcus mutans and 
Streptococcus pneumoniae, have been recognized to have the ability 
to form biofilm [93]. Streptococcus spp. biofilm growth is particularly 
studied in Streptococcus mutans and Streptococcus gordonii [94-96]. A 
biofilm matrix is composed of microbial cells, polysaccharides, water and 
other extracellular products; which provide a sheltered and protected site 
for bacterial growth [97]. In this way the bacteria are more resistant to 
antibiotics, disinfectants and host defenses. Therefore, the difficulties to 
treat recurrent infections could be related to the capacity of the pathogens 
to produce biofilm [98]. Due to its size, biofilm is not susceptible to being 
phagocytosed by polymorphonuclear neutrophils or macrophages. In 
addition, it allows the bacteria to adapt to unfavorable conditions present 
in the surrounding environment as cold, heat, drying and particularly 
situations of rapid and constant flow, such as arteries and other living 
tissue structures or inert surfaces such as catheters or tubes used in 
mechanical milkers present in the livestock industry [99]. The  literature  
reported  that  65%  of  infections  would  be  associated  with   biofilm 
formation in other mastitis agents, such as S. aureus [100]. S.aureus is 
one of agent most studied as a biofilm producer. The ability of this 
microorganism to persist in the mammary gland forming biofilm, would 
be one of the possible sources of persistent or chronic infections [101]. 
Biofilm growth is more resistant to antibiotics than planktonic growth, 
and commonly a high concentration of antimicrobial agents is necessary 
to remove biofilm formation [102].

The concentration and type of nutrient available in the environment 
influence the development and chemical composition of the biofilm; 
in oligotrophic environments, microorganisms respond to nutritional 
stress through alterations in the morphology and cell surface [103]. 

Different studies about biofilm production by mastitis strains have been 
reported [104,105]. Previously, we studied the biofilm formation ability 
of S. uberis strains the effects of several factors as additives and bovine 
milk compounds on biofilm production and the genetic variation 
among S. uberis isolates to establish relationship between virulence 
profiles and PFGE patterns [14,106,107]. The results showed that 
S. uberis isolates had a notable ability to produce biofilm at different 
degrees [14]. Our results agree with those of Moore (2009) who 
reported that the majority of the strains were able to produce biofilm 
[108]. Likewise, Varhimo et al. (2010) reported that the biolfim was 
produced at different degrees [104]. In addition, to establish the optimal 
conditions for biofilm formation of S. uberis strains, biofilm assays were 
carried out under various representative conditions of the mammary 
gland, and the most favorable conditions for biofilm formation were at 
pH 7 and at 37°C [106]. A decrease in biofilm formation was observed 
by the addition of bovine milk compounds as casein hydrolysate (3 
mg/ml) and carbohydrates as glucose (5%) and lactose (0.5% and 
5%). Furthermore, extrachromosomal ADN was observed in cell-free 
supernatants [106]. The in vitro biofilm formation of S. uberis strains 
has been investigated using different culture media and conditions, 
obtaining divergent results [105,106,109]. Similarly, Rossini et al. 
(2015) showed discrepancies between different studies in S. agalactiae 
(GroupB Streptococcus) [110].

Biofilm is an example of group behavior where different genes are 
involved. It has been associated with the presence of quorum sensing 
and bacterial competition genes [111]. Quorum sensing is a process 
involved in cell-cell communication essential for biofilm formation, but 
also for bioluminescence, expression of virulence factors, sporulation, 
mating, production of antibiotics and DNA exchange [112].   luxS gene 
is involved in quorum sensing, and this system controls the behavior 
when the population of bacteria reaches certain cell density. This 
reaction becomes effective by the simultaneous action of a significant 
number of cells [113]. On the other hand, the genes comEA and comEC 
are involved in the bacterial competence, allowing the transformation 
of genomic DNA through the uptake of DNA strands. comEA gene acts 
as a DNA receptor and passes through a protein channel that regulates 
uptake. This channel is encoded by the comEC gene [114]. According 
to a study performed by Moore (2009) most of the strains evaluated 
yielded genes associated with biofilm formation as luxS, comEA, comEC 
and comX [108]. Our results showed that the rate of luxS, com EA in 
S. uberis isolates was 42.8% and 21.4%, respectively [14]. Similarly, 
more than half of the strains were positive for comEC and comEX genes 
[115]. Results suggest that these genes would be necessary for biofilm 
formation. A better understanding of the quorum sensing process may 
contribute to develop effective methods to avoid microbial biofilm 
formation.

Conclusion
Intramammary infections by S. uberis cause important economic 

losses in the dairy industry. Different studies have characterized pheno 
and genotipically S. uberis strains and aimed at researching to improve 
the knowledge of virulence factors and biofilm production in S. uberis 
strains. The studies could serve as basis for the future development of 
effective and appropriate treatment protocols that could alleviate the 
impact of mastitis caused by this environmental pathogen.
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